
AllFusion Endevor®
Change Manager

Automated Configuration Option Guide
4.0

ENACM400

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by
the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force
and effect. Should the license terminate for any reason, it shall be the user's responsibility to return to CA the
reproduced copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct
or indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

First Edition, December 2002

 2002 Computer Associates International, Inc. (CA)
All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

Chapter 1. Introduction . 1-1
1.1 Overview . 1-2
1.2 Before You Begin . 1-3

1.2.1 Read This Chapter First . 1-3
1.3 Software Configuration Management . 1-4

1.3.1 What is Software Configuration Management? 1-4
1.3.2 Background . 1-4
1.3.3 Limitations of Source Scanning . 1-4
1.3.4 A New Technique . 1-5

1.4 Endevor ACM Facilities . 1-6
1.4.1 Summary . 1-6
1.4.2 Component Monitor . 1-6
1.4.3 Component List . 1-6

1.4.3.1 Component List Level Numbers 1-7
1.4.4 Displaying Component Data and Batch Reporting 1-7
1.4.5 Software Control Language (SCL) Enhancements 1-7
1.4.6 ACM Query Facility . 1-7

1.5 Principles of Operation . 1-8
1.5.1 Three Areas of Operation . 1-8
1.5.2 Data Collection . 1-8
1.5.3 Data Storage . 1-8

1.5.3.1 Example . 1-9
1.5.4 Software Configuration Analysis and Management 1-11

1.6 Documentation Overview . 1-12
1.7 Name Masking . 1-13

1.7.1 Usage . 1-13
1.8 Syntax Conventions . 1-15

1.8.1 Sample Syntax Diagram . 1-18
1.8.2 Syntax Diagram Explanation . 1-18
1.8.3 General Coding Information . 1-20

1.8.3.1 Valid Characters . 1-20
1.8.3.2 Incompatible Commands and Clauses 1-21
1.8.3.3 Ending A Statement . 1-21
1.8.3.4 SCL Parsing Information . 1-21

1.8.4 Element Name Syntax Rules . 1-22
1.8.5 SCL Continuation Syntax Rules . 1-22

Chapter 2. Basic Operation . 2-1
2.1 Overview . 2-2

Contents iii

2.2 How Endevor ACM Works . 2-3
2.2.1 Overview . 2-3

2.3 Enabling Endevor ACM and the ACM Query Facility 2-4
2.3.1 Procedure . 2-4
2.3.2 Activating the ACM Query Facility . 2-5

2.3.2.1 Step 1 — Modify C1DEFLTS Table 2-5
2.3.2.2 Step 2 — Estimate Root and Cross-reference Data Sets Space

Requirements . 2-7
2.3.2.3 Step 3 — Define and Initialize Root and Cross-Reference Data Sets 2-8
2.3.2.4 Step 4 — Load Root and Cross-Reference Data Sets 2-9
2.3.2.5 Syntax . 2-13
2.3.2.6 Output Examples . 2-14
2.3.2.7 Maintaining the Root and Cross-reference Data Sets 2-17

2.4 Monitoring and Collecting Data . 2-18
2.4.1 After You've Enabled ACM . 2-18
2.4.2 The Component Monitor . 2-18

2.4.2.1 Program Object Support . 2-18
2.4.3 Activating the Endevor ACM Component Monitor 2-19
2.4.4 Monitoring Components in Dynamically Allocated Data Sets 2-19

2.4.4.1 Monitoring Input Components 2-20
2.4.4.2 Monitoring Output Components 2-20

2.4.5 Monitoring Components in a Generate Processor 2-20
2.4.6 Monitoring Components in a Move Processor 2-21
2.4.7 No Monitoring of Components in a Delete Processor 2-22

2.4.7.1 Sample Generate Processor + MONITOR=COMPONENTS . . . 2-22
2.4.7.2 Sample Move Processor . 2-25

2.5 Storing Configuration Information . 2-27
2.5.1 Overview . 2-27
2.5.2 The Component List . 2-27
2.5.3 Storing Component Lists . 2-30

2.5.3.1 Base/Delta Technology . 2-31
2.5.3.2 Component Levels . 2-31
2.5.3.3 CONSCAN Processor Utility . 2-32
2.5.3.4 Difference between Component Level and Element Level 2-32
2.5.3.5 Component Levels Renumbered 2-33

2.6 Viewing Component Lists . 2-34
2.6.1 Procedure . 2-34
2.6.2 WARNING . 2-36
2.6.3 Display Element/Component Lists Panel Fields 2-36

2.6.3.1 Option Field . 2-37
2.6.3.2 From Endevor Fields . 2-38
2.6.3.3 List Options Fields . 2-38

2.6.4 Displaying Summary Information . 2-39
2.6.4.1 Summary of Levels Panel Field Descriptions 2-40

2.6.5 Using Browse Element (BX) . 2-41
2.6.6 Displaying Component Changes (CX) 2-44
2.6.7 Viewing Change History (HX) . 2-47

2.7 Component List Fields . 2-52
2.7.1 Seven Sections . 2-52
2.7.2 Banner . 2-52
2.7.3 Component Level Information . 2-53

iv Automated Configuration Option Guide

2.7.4 Element Information . 2-54
2.7.5 Processor Information . 2-55
2.7.6 Symbol Information . 2-57
2.7.7 Input Components . 2-58
2.7.8 Output Components . 2-59
2.7.9 Related Input Components . 2-61
2.7.10 Related Output Components . 2-62
2.7.11 Related Objects . 2-63
2.7.12 Related Comments . 2-64
2.7.13 Input/Output Component Footprints 2-64

2.7.13.1 Information Included in a Endevor Footprint 2-64
2.7.13.2 When Footprints Are Included in the Component List 2-64
2.7.13.3 When Footprints Are Not Included in the Component List . . . 2-64

2.8 Element Action Processing . 2-65

Chapter 3. ACM Query Facility . 3-1
3.1 Overview . 3-2
3.2 Introduction to the ACM Query Facility . 3-3
3.3 Using ACMQ . 3-4

3.3.1 Refreshing ACMQ Data . 3-4
3.3.2 Indirect References . 3-4

3.4 ACMQ Panels . 3-6
3.4.1 ACM Query Panel . 3-6
3.4.2 ACMQ Create GENERATE SCL Panel 3-8
3.4.3 Endevor ACM Submit JOBCARD Statements Panel 3-11

Chapter 4. Analyzing and Managing Software Configuration Information . 4-1
4.1 Overview . 4-2
4.2 SCL . 4-3

4.2.1 Overview . 4-3
4.2.2 The LIST Action . 4-3

4.2.2.1 WHERE Clauses . 4-3
4.2.2.2 Build Clauses . 4-4

4.2.3 The Print Action . 4-4
4.2.4 The Set Build Statement . 4-5
4.2.5 The Set Options Statement . 4-5
4.2.6 The Set Where Statement . 4-6
4.2.7 Clear Statements . 4-6

4.3 Change Impact Analysis Functions . 4-7
4.3.1 Overview . 4-7
4.3.2 Analyzing System Behavior . 4-7

4.3.2.1 Step 1: Create PRINT SCL . 4-7
4.3.2.2 Step 2: Submit the Job for Batch Execution 4-8
4.3.2.3 Step 3: View the Resulting Report 4-8
4.3.2.4 Step 4: Analyze System Behavior 4-10

4.3.3 Propagating a Component Change to All Affected Programs 4-10
4.3.3.1 Step 1: Change and Test the Retrieved Copybook and Program . 4-11
4.3.3.2 Step 2: Add the Copybook and Program to Stage 1 4-11
4.3.3.3 Step 3: Create LIST SCL and Execute It 4-11
4.3.3.4 Step 4: Tailor the Generated SCL and Execute It 4-12

Contents v

4.3.4 Validating a System for Consistent Use of Components 4-12
4.3.4.1 Step 1: Create LIST SCL and Execute It 4-13
4.3.4.2 Step 2: View Execution Report 4-14
4.3.4.3 Step 3: Check Generated SCL for Inconsistencies 4-16

4.3.5 Recreating Past Program Versions . 4-17
4.3.5.1 Step 1: Browse the Component List at Stage 2 4-18
4.3.5.2 Step 2: Code LIST SCL and Submit for Execution 4-19
4.3.5.3 Step 3: Tailor the Generated SCL and Submit for Execution . . 4-20

4.3.6 Moving Related Source Components During Promotion to Production 4-21
4.3.6.1 Step 1: Create LIST SCL . 4-22
4.3.6.2 Step 2: Run a Batch Execution 4-22
4.3.6.3 Step 3: Tailor the Generated SCL 4-23
4.3.6.4 Step 4: Run a Final Batch Execution 4-23

4.3.7 Adding Related Elements to a Component List 4-23
4.3.8 Writing Elements to an External Location 4-24

Index . X-1

vi Automated Configuration Option Guide

 Chapter 1. Introduction

Chapter 1. Introduction 1-1

1.1 Overview

 1.1 Overview

AllFusion Endevor Change Manager ACM (Automated Configuration Manager, or
simply ACM) works in conjunction with AllFusion Endevor Change Manager (referred
to in this guide simply as Endevor) to enable you to manage, through advanced
automated technology, the interrelationships between software components. This
chapter introduces Software Configuration Management, followed by a general
description of the features and facilities of Endevor ACM.

1-2 Automated Configuration Option Guide

1.2 Before You Begin

1.2 Before You Begin

1.2.1 Read This Chapter First

It is strongly recommended that this chapter be fully understood before proceeding
further. This manual assumes that:

■ The Endevor system has been installed in accordance with the instructions
provided in the Installation Guide.

■ You have an understanding of the Endevor environment in your organization.

■ You have an understanding of software inventory management and application
migration techniques.

Chapter 1. Introduction 1-3

1.3 Software Configuration Management

1.3 Software Configuration Management

1.3.1 What is Software Configuration Management?

A typical software inventory is comprised of numerous application programs and the
components—the common code (such as COBOL copybooks, Assembler macros, and
CALLed subroutines)—which make up those programs. The discipline of managing
the interrelationships between programs and their associated components is called
software configuration management.

 1.3.2 Background

When a program is translated (for example, compiled, link-edited) from source to
executable, all of the components which make up that program are extracted by
language translators and/or linkage editors from their resident libraries, such as
copylibs or maclibs. The major challenge is ensuring that the relationship between a
program and its related components is accurate and up-to-date, at any given point in
time. This synchronization is typically accomplished by retranslating a program each
time one of its subordinate components is changed. A problem arises, however, when
a component is changed but that modification is not propagated to all affected
programs.

The lack of automated, reliable methods for coordinating program-component
relationships has created major obstacles to software development and maintenance.
Manual definition of program-component relationships is error-prone and
time-consuming by today's standards. In addition, manual methodologies do not yield
the level of component detail (version/ level/ location) needed to accurately plan and
stage application development activities.

1.3.3 Limitations of Source Scanning

Traditional approaches to software configuration management have been severely
limited in their ability to produce accurate and reliable results. Source scanning
techniques, while an improvement over manual definition, provide only a static
"picture" of the program-component relationship. This picture may not relate to the
actual state of the software at the time of program translation. Source scanning is a
separate operation run independently of the compile process and, as such, is only
accurate at the time of the scan. Furthermore, scanning neither stores historical
information nor provides the level of detail needed to analyze and perform
configuration management functions.

1-4 Automated Configuration Option Guide

1.3 Software Configuration Management

1.3.4 A New Technique

Building on advanced monitoring and data storage technology, Endevor ACM
overcomes the shortcomings inherent in traditional approaches to change control and
configuration management. Endevor ACM monitors the libraries that house program
components and automatically captures related components during the translation
process. It then stores this in formation using expert base/delta technology to help in
determining changes to components from one translation to the next. Unlike source
scanning, Endevor ACM works as an integral part of the translation procedure to
automatically track program components over time.

When activated, Endevor ACM forms an "envelope" around the translation process
(for example, compiler or linkage editor). When the program or module is executed
under an Endevor processor, Endevor ACM tracks all requested change activity and
application program-component relationships. Module interrelationships are
automatically captured as part of the translation procedure. Optionally, this
information can also be automatically stored in Root and Cross-reference data sets for
"where-used" analysis.

Chapter 1. Introduction 1-5

1.4 Endevor ACM Facilities

1.4 Endevor ACM Facilities

 1.4.1 Summary

The following facilities are supplied with Endevor ACM:

 ■ Component Monitor

 ■ Component List

■ Displaying Component Data and Batch Reporting

■ Software Control Language (SCL) Enhancements

■ ACM Query Facility

 1.4.2 Component Monitor

The Endevor ACM Component Monitor is invoked by adding a special
"MONITOR=COMPONENTS" keyword to DD statements in an Endevor processor.
Monitoring is performed on a data set basis. Once initiated, components used from the
specified data sets are automatically tracked by Endevor ACM's Component Monitor.

 1.4.3 Component List

The Endevor ACM Component List provides a detailed "snapshot" of all the
components from monitored data sets at the time of program translation. The
Component List provides five types of information: element, processor, symbol, input,
and output.

■ The element information describes the program being generated.

■ The processor information describes the Endevor processor used to generate or
move the element.

■ The symbol information identifies the user-defined symbolics used in the Endevor
processor, and their values.

■ The input components identify (by step, DDname, dsname, and volume) the
component items referenced and any footprints that existed in a monitored data
set.

■ The output components identify (by step, DDname, dsname, and volume) the
members that were created during processor execution.

The first time Endevor ACM monitoring is enabled for an element, a "base"
component list is stored. This component list contains all of the element, processor,
input, and output information mentioned above. Subsequent generations produce new
component lists which Endevor ACM internally compares to produce "delta levels." (A
new delta level is stored only when one or more items change in the component list.)
This base/delta architecture makes it possible to compare component list changes from

1-6 Automated Configuration Option Guide

1.4 Endevor ACM Facilities

compile to compile. With this information, you can quickly determine what has
changed since the last compile, as well as greatly reduce debug time.

1.4.3.1 Component List Level Numbers

The level numbers assigned to a component list (component levels) are independent of
the level numbers assigned to an element (element levels). Since an element may be
recompiled many times due to copy or macro changes, there may be more component
levels than element levels. In addition, monitoring may be initiated at any time and at
any element level. For example, an element at level 77 will have a component list at
level 0 when it is first enabled for monitoring by Endevor ACM.

Endevor ACM remembers up to 97 generations of a component list by default. When
level 97 is reached, component levels 50-96 are re-numbered as 0-49, and the previous
(old) levels 0-49 are deleted. In this way, the component list functions like a circular
storage vehicle. You are guaranteed that the last 50 "translations" are remembered by
Endevor ACM if you use the default. You can set the number of generations
remembered by Endevor ACM to a number lower than 97.

1.4.4 Displaying Component Data and Batch Reporting

Endevor's element display facility enables you to view configuration information
online. Using this facility, you can view the current level of a program and its related
components, the component changes from one compile to the next, and the complete
change history of a program and its components over time. All Foreground Query
options (Component Summary, Component Browse, Component Changes, Component
History) are also available in batch through the SCL PRINT command.

1.4.5 Software Control Language (SCL) Enhancements

Expanding on Endevor's batch processing language, SCL, Endevor ACM enables you
to "implode" and "explode" information in a component list through a special LIST
command. This command produces valid syntax which can further be used to perform
Endevor actions such as GENERATE, MOVE, and ADD. The LIST command
performs the function of cross-referencing a low-level component with all of its higher
level "owners."

1.4.6 ACM Query Facility

The ACM Query Facility provides the capability to quickly perform "where-used"
queries against ACM component data. This facility utilizes the information stored in
the Root and Cross-reference data sets to provide this analysis. This data will be
dynamically updated during processor execution or loaded at regular intervals by your
system administrator. See Chapter 3, "ACM Query Facility," for more information.

Chapter 1. Introduction 1-7

1.5 Principles of Operation

1.5 Principles of Operation

1.5.1 Three Areas of Operation

Operationally, Endevor ACM can be divided into three distinct areas: data collection,
data storage, and software configuration analysis and management.

 1.5.2 Data Collection

Data Collection begins when you invoke Endevor ACM through the
MONITOR=COMPONENTS parameter in an Endevor processor. With this parameter,
you specify the libraries and data sets that are to be monitored automatically by
Endevor ACM. Then, the Component Monitor tracks all change activity and
program-component relationships for the data sets you earmarked for monitoring.

 1.5.3 Data Storage

Endevor ACM produces a component list during program translation (compilation),
thus beginning the data storage process. The component list is an internal data
structure which assembles all program-component information, along with an audit
stamp or "footprint" for each component, at the time of each compile. Component list
"levels" (differences in component lists from one translation to the next) are stored in
Endevor base/delta format. The component list provides a "snapshot" of a program at
compilation—identifying an element's components, where they originated, their version
and level, and the output created as the result of the translation.

1-8 Automated Configuration Option Guide

1.5 Principles of Operation

If the ACM Query Facility has been activated and the ACMIXUPD option has been
set to 'Y' in the C1DEFLTS Table, then the information contained in the component
list will be used to update the ACM Query Facility Root and Cross-reference data sets.

 1.5.3.1 Example

The following diagram illustrates how Endevor ACM stores and remembers the
components used to create the outputs for a particular generate date and time, version,
and level of a typical COBOL program—PROGRAM X—as transformed by the
Endevor processor COMPLINK. The Endevor ACM Component Monitor has captured
all of the components of PROGRAM X, along with the Endevor footprint information
associated with those components. The resulting component list provides an integrated
view of all configuration information relating to PROGRAM X at the time of the
translation.

Chapter 1. Introduction 1-9

1.5 Principles of Operation

1-10 Automated Configuration Option Guide

1.5 Principles of Operation

1.5.4 Software Configuration Analysis and Management

Through the component list and the information stored in the Root and Cross-reference
data sets, it is possible to initiate Endevor actions and make online inquiries. When
viewed over time, this information provides a historical audit trail of component
changes which serves as the foundation for all software configuration analysis and
management activities, including:

■ Analyzing system behavior

■ Propagating a component change to all affected programs

■ Validating a system for consistent use of components

■ Recreating past program versions

■ Moving related source components during promotion to production

■ Providing "where-used" analysis

For more information, see Chapters 3 and 4.

Chapter 1. Introduction 1-11

1.6 Documentation Overview

 1.6 Documentation Overview

This manual is part of a comprehensive documentation set that fully describes the
features and functions of Endevor and explains how to perform everyday tasks. For a
complete list of Endevor manuals, see the PDF Table of Contents file in the PDF
directory, or the Bookmanager Bookshelf file in the Books directory.

The following section describes product conventions.

1-12 Automated Configuration Option Guide

1.7 Name Masking

 1.7 Name Masking

A name mask allows you to specify all names, or all names beginning with a
particular string, to be considered when performing an action.

Name masks are valid on:

 ■ Element names

■ System, subsystem, and type names within FROM clauses

 ■ Report syntax

 ■ ISPF panels

 ■ API requests

Name masks are not valid on:

 ■ Environment names

■ Element names in the following situations:

– When entering a LEVel in a statement

– When using the MEMber clause with a particular action

– When building a package

 1.7.1 Usage

There are three ways to mask names: by using the wildcard character (*), by using the
placeholder character (%), and by using both together.

The wildcard (*) can be used in one of two ways to specify external file names:

■ When coded as the only character of a search string, Endevor returns all members
of the search field. For example, if you coded the statement ADD ELEMENT *,
all elements would be added.

■ When coded as the last character of a search string, Endevor returns all members
of the search field beginning with the characters in the search string preceding the
wildcard. For example, the statement ADD ELEMENT UPD* would add all
elements beginning with "UPD", such as UPDATED or UPDATE.

Note: You cannot use more than one wildcard in a string. The statement ADD
ELEMENT U*PD* would result in an error.

The placeholder (%) can also be used in one of two ways:

■ When coded as the last character in a string, Endevor returns all members of the
search field, beginning with the characters in the search string preceding the
placeholder, but which have no more characters than were coded in the search
string. If you coded the statement ADD ELEMENT UPD%, only those elements

Chapter 1. Introduction 1-13

1.7 Name Masking

with four-character-long names beginning with "UPD" (UPD1 or UPDA, for
example) would be added.

■ It is also possible to use the placeholder multiple times in a single search string.
The statement ADD ELEMENT U%PD% would return all elements with
five-character-long names that have U as the first character, and PD third and
fourth.

The wildcard and the placeholder can be used together, provided that the wildcard
appears only at the end of the search string and is used only once. An example of a
statement using both the wildcard and the placeholder is ADD ELEMENT U%D*.
This statement would add elements with names of any length that have U as the first
character and D as the third.

1-14 Automated Configuration Option Guide

1.8 Syntax Conventions

 1.8 Syntax Conventions

Endevor uses the IBM standard for representing syntax. The following table explains
the syntax conventions:

Syntax Explanation

��────────────────────────────────── Represents the beginning of a syntax
statement.

──────────────────────────────────�� Represents the end of a syntax
statement.

───────────────────────────────────� Represents the continuation of a
syntax statement to the following line.

�─────────────────────────────────── Represents the continuation of a
syntax statement from the preceding
line.

��──KEYword───────────────────────�� Represents a required keyword. Only
the uppercase letters are necessary.

��──variable──────────────────────�� Represents a required user-defined
variable.

��─ ──┬ ┬───────── ──────────────────��
 └ ┘─KEYword─

Represents an optional keyword.
Optional keywords appear below the
syntax line. If coded, only the
uppercase letters are necessary.

��─ ──┬ ┬────────── ─────────────────��
 └ ┘─variable─

Represents an optional user-defined
variable. Optional variables appear
below the syntax line.

��─ ──┬ ┬─KEYword ONE─── ────────────��
 ├ ┤─KEYword TWO───
 └ ┘─KEYword THRee─

Represents a choice of required,
mutually exclusive keywords. You
must choose one and only one
keyword.

��─ ──┬ ┬─variable one─── ───────────��
 ├ ┤─variable two───
 └ ┘─variable three─

Represents a choice of required,
mutually exclusive, user-defined
variables. You must choose one and
only one variable.

��─ ──┬ ┬─────────────── ────────────��
 ├ ┤─KEYword ONE───
 ├ ┤─KEYword TWO───
 └ ┘─KEYword THRee─

Represents a choice of optional,
mutually exclusive keywords.
Optional keywords appear below the
syntax line.

Chapter 1. Introduction 1-15

1.8 Syntax Conventions

Syntax Explanation

��─ ──┬ ┬──────────────── ───────────��
 ├ ┤─variable one───
 ├ ┤─variable two───
 └ ┘─variable three─

Represents a choice of optional,
mutually exclusive, user-defined
variables. Optional variables appear
below the syntax line.

��──¤─ ──┬ ┬─────────────── ─¤───────��
 ├ ┤─KEYword ONE───
 ├ ┤─KEYword TWO───
 └ ┘─KEYword THRee─

Represents a choice of optional
keywords. The stars (¤) indicate that
the keywords are not mutually
exclusive. Code no keyword more
than once.

��──¤─ ──┬ ┬──────────────── ─¤──────��
 ├ ┤─variable one───
 ├ ┤─variable two───
 └ ┘─variable three─

Represents a choice of optional
user-defined variables. The stars (¤)
indicate that the variables are not
mutually exclusive. Code no variable
more than once.

 ┌ ┐─KEYword ONE───
��─ ──┼ ┼─KEYword TWO─── ────────────��
 └ ┘─KEYword THRee─

Represents a choice of required,
mutually exclusive keywords, one of
which is the default. In this example,
KEYword ONE is the default keyword
because it appears above the syntax
line.

 ┌ ┐─variable one───
��─ ──┼ ┼─variable two─── ───────────��
 └ ┘─variable three─

Represents a choice of required,
mutually exclusive, user-defined
variables, one of which is the default.
In this example, variable one is the
default variable because it appears
above the syntax line.

 ┌ ┐─KEYword ONE───
��─ ──┼ ┼─────────────── ────────────��
 ├ ┤─KEYword TWO───
 └ ┘─KEYword THRee─

Represents a choice of optional,
mutually exclusive keywords, one of
which is the default. In this example,
KEYword ONE is the default keyword
because it appears above the syntax
line.

 ┌ ┐─variable one───
��─ ──┼ ┼──────────────── ───────────��
 ├ ┤─variable two───
 └ ┘─variable three─

Represents a choice of optional,
mutually exclusive, user-defined
variables, one of which is the default.
In this example, variable one is the
default variable because it appears
above the syntax line.

 ┌ ┐─,────────
��──(─ ───

┴─variable─ ─)────────────��

Represents a required variable that can
be repeated. Separate each occurrence
with a comma and enclose any and all
variables in a single set of parenthesis.

1-16 Automated Configuration Option Guide

1.8 Syntax Conventions

Syntax Explanation

��─ ──┬ ┬──────────────────── ───────��
 │ │┌ ┐─,────────
 └ ┘ ─(─ ───

┴─variable─ ─)─

Represents an optional variable that
can be repeated. Separate each
occurrence with a comma and enclose
any and all variables in a single set of
parenthesis.

��──(variable)────────────────────�� Represents a variable which must be
enclosed by parenthesis.

��──'variable'────────────────────�� Represents a variable which must be
enclosed by single quotes.

��──"variable"────────────────────�� Represents a variable which must be
enclosed by double quotes.

��──┤ FRAGMENT REFERENCE ├────────�� Represents a reference to a syntax
fragment. Fragments are listed on the
lines immediately following the
required period at the end of each
syntax statement.

FRAGMENT:
├──KEYword──variable───────────────┤

Represents a syntax fragment.

�────────────────────────.────────�� Represents the period required at the
end of all syntax statements.

Chapter 1. Introduction 1-17

1.8 Syntax Conventions

1.8.1 Sample Syntax Diagram

��──ARChive ELEment──element-name─ ──┬ ┬─────────────────────────── ──────�
 └ ┘ ──┬ ┬─THRough─ ─element-name─
 └ ┘─THRu────

�──FROm─ ─ENVironment──env-name──SYStem──sys-name───────────────────────�

�─ ─SUBsystem──subsys-name──TYPe──type-name─────────────────────────────�

�─ ──┬ ┬─STAge──stage-id──────── ─TO─ ──┬ ┬─FILe─── ─dd-name─────────────────�
 └ ┘ ─STAge NUMber──stage-no─ └ ┘─DDName─

�─ ──┬ ┬─────────────────────────── ──────────────────────────────────────�
 └ ┘ ─WHEre──¤─ ──┬ ┬────────── ─¤─

├ ┤─┤ CCID ├─
└ ┘─┤ PRO ├──

�─ ──┬ ┬─── ─.─────────────────────��
 └ ┘ ─OPTion──¤─ ──┬ ┬─────────────────────── ─¤─
 ├ ┤─CCId──ccid────────────
 ├ ┤─COMment──comment──────
 ├ ┤─OVErride SIGNOut──────

└ ┘─BYPass ELEment DELete─

CCID:
┌ ┐─EQual─ ┌ ┐─,────

├──CCId─ ──┬ ┬────────────────── ──┼ ┼─────── ─(─ ───

┴─ccid─ ─)───────────────┤
 │ │┌ ┐─CURrent── └ ┘─=─────
 └ ┘ ─OF─ ──┼ ┼─ALL──────
 └ ┘─RETrieve─

PRO:
 ┌ ┐─,──────────
├──PROcessor GROup─ ──┬ ┬─EQual─ ─(─ ───

┴─group name─ ─)────────────────────┤

 └ ┘─=─────

1.8.2 Syntax Diagram Explanation

Syntax Explanation

ARChive ELEment
element-name

The keyword ARChive ELEment appears on the main
line, indicating that it is required. The variable
element-name, also on the main line, must be coded.

THRough / THRu
element-name

The keywords THRough and THRu appear below the
main line, indicating that they are optional. They are
also mutually exclusive.

FROm ENVironment ...
TYPe type-name

Each keyword and variable in this segment appear on
the main line, indicating that they are required.

STAge stage-id / STAge
NUMber stage-no

The keywords STAge and STAge NUMber appear on
and below the main line, indicating that they are
required, mutually exclusive keywords.

1-18 Automated Configuration Option Guide

1.8 Syntax Conventions

Syntax Explanation

TO ... dd-name The keyword TO appears on the main line, indicating
that it is required. The keywords FILe and DDName
appear on and below the main line, indicating that they
are required, mutually exclusive keywords. The variable
dd-name also appears on the main line, indicating that it
is required.

WHEre clause This clause appears below the main line, indicating that
it is optional. The keyword WHEre appears on the main
line of the clause, indicating that it is required. CCID
and PRO are syntax fragments that appear below the
main line, indicating that they are optional. The stars
(¤) indicate that they are not mutually exclusive. For
details on the CCID and PRO fragments, see the bottom
of this table.

OPTion clause This clause appears below the main line, indicating that
it is optional. The keyword OPTion appears on the
main line of the clause, indicating that it is required.
The keywords CCId, COMment, OVErride SIGNOut,
and BYPass ELEment DELete all appear below the
main line, indicating that they are optional. The stars
(¤) indicate that they are not mutually exclusive.

CCID fragment The keyword CCId appears on the main line, indicating
that it is required. The OF clause appears below the
main line, indicating that it is optional. If you code this
clause, you must code the keyword OF, as it appears on
the main line of the clause. CURrent, ALL, and
RETrieve appear above, on, and below the main line of
the clause, indicating that they are required, mutually
exclusive keywords. CURrent appears above the main
line, indicating that it is the default. If you code the
keyword OF, you must choose one and only one of the
keywords.

The keywords EQual and = appear above and below the
main line, indicating that they are optional, mutually
exclusive keywords. EQual appears above the main
line, indicating that it is the default. You can include
only one. The variable ccid appears on the main line,
indicating that it is required. The arrow indicates that
you can repeat this variable, separating each instance
with a comma. Enclose any and all variables in a single
set of parenthesis.

Chapter 1. Introduction 1-19

1.8 Syntax Conventions

Syntax Explanation

PRO fragment The keyword PROcessor GROup appears on the main
line, indicating that it is required. The keywords EQual
and = appear on and below the main line, indicating that
they are required, mutually exclusive keywords. You
must include one. The variable group name appears on
the main line, indicating that it is required. The arrow
indicates that you can repeat this variable, separating
each instance with a comma. Enclose any and all
variables in a single set of parenthesis.

1.8.3 General Coding Information

In coding syntax, you must adhere to certain rules and guidelines regarding valid
characters, incompatible commands and clauses, and ending statements. In addition,
knowing how the SCL parser processes syntax will help you resolve errors and
undesired results. The following sections outline these rules and guidelines.

 1.8.3.1 Valid Characters

The following characters are allowed when coding syntax:

■ Upper case letters

■ Lower case letters

 ■ Numbers

 ■ Hyphen (-)

■ National characters ($, #, @)

 ■ Underscore (_)

The following characters are allowed when coding syntax, but must be enclosed in
either single (') or double (") quotation marks:

 ■ Space

 ■ Tab

 ■ New line

 ■ Carriage return

 ■ Comma (,)

 ■ Period (.)

■ Equal sign (=)

■ Greater than sign (>)

■ Less then sign (<)

1-20 Automated Configuration Option Guide

1.8 Syntax Conventions

■ Parenthesis ()

■ Single quotation marks

■ Double quotation marks

A string containing single quotation marks must be enclosed in double quotation
marks. A string containing double quotation marks must be enclosed in single
quotation marks.

To remove information from an existing field in the database, enclose a blank space in
single or double quotation marks. For example, the following statement removes the
default CCID for user TCS:

DEFINE USER TCS

DEFAULT CCID " ".

The characters "*" and "%" are reserved for name masking. See the section “Name
Masking” earlier in this chapter for more information.

1.8.3.2 Incompatible Commands and Clauses

The following commands and clauses are mutually exclusive:

■ THRough and MEMber clauses within any action except LIST

■ Endevor location information (environment, system, subsystem, type, and stage)
and data set names (DSName)

■ File names (DDName), data set names (DSName) and the PATH clause which is
mutually exclusive with the FILE or Data set clauses.

■ The stage id (STAge / STAge ID) and the stage number (STAge NUMber)

■ The SET TO Endevor location information and the SET TO MEMber clause

■ The HFSFile clause is mutually exclusive with a Member clause.

1.8.3.3 Ending A Statement

You must enter a period at the end of each statement. If no period is found, you
receive an error message and the job terminates.

1.8.3.4 SCL Parsing Information

■ The SCL parser does not look for information in columns 73-80 of the input.
Therefore, be sure that all relevant information is coded in columns 1-72.

■ The SCL parser does not catch duplicate clauses coded for an SCL request. If
you code the same clause twice, SCL uses the Boolean "AND" to combine the
clauses. If the result is invalid, you receive an error message.

■ If you enter an asterisk (*) in column 1, the remainder of the line is considered a
comment by the SCL parser and is ignored during processing.

Chapter 1. Introduction 1-21

1.8 Syntax Conventions

■ Any value found to the right of the period terminating the SCL statement is
considered a comment by the SCL parser and is ignored during processing.

1.8.4 Element Name Syntax Rules

The Element name can be up to 255 characters long. It can contain only the following
characters:

■ Upper case letters

■ Lower case letters

 ■ Numbers

 ■ Period (.)

 ■ Hyphen (-)

■ National characters ($, #, @)

 ■ Underscore (_)

Element names name include a percent sign (%) in any column as a placeholder
character in most SCL. The final one or more characters may be replaced in SCL and
some panels with an asterisk (*) as a wild character for selection purposes.

1.8.5 SCL Continuation Syntax Rules

All SCL parameters that span multiple lines must be enclosed in single quotes. SCL
keyword parameters cannot span multiple lines—only the parameter values. The
syntax required to span a paramter value should lead with an apostrophe or quotation
mark at the beginning of the specification and a trailing apostrophe or quotation mark
of the value. Spaces that are not surrounded by non-blank characters will not be
included in the text string. Example:

ADD ELEMENT 'Spanned

ElementName' CCID 'This is the chan

ge control number'

This would result in an element value of "SpannedElementName" and a CCID value of
"This is the change control number".

1-22 Automated Configuration Option Guide

 Chapter 2. Basic Operation

Chapter 2. Basic Operation 2-1

2.1 Overview

 2.1 Overview

This chapter begins with an overview of Endevor ACM and then describes how to
enable and use Endevor ACM.

2-2 Automated Configuration Option Guide

2.2 How Endevor ACM Works

2.2 How Endevor ACM Works

 2.2.1 Overview

Endevor ACM functions can be separated into the following four categories:

1. Enabling Endevor ACM — Manual setup function performed by Endevor
administrators.

2. Monitoring and Collecting Data — Performed automatically by the Endevor ACM
Component Monitor.

3. Storing and Viewing Configuration Information — Capabilities provided by
Endevor ACM through Component Lists and base/delta technology.

4. Analyzing and Managing Configuration Information — Performed by users, with
configuration information automatically monitored and stored by Endevor ACM.

Chapter 2. Basic Operation 2-3

2.3 Enabling Endevor ACM and the ACM Query Facility

2.3 Enabling Endevor ACM and the ACM Query Facility

 2.3.1 Procedure

Endevor ACM is shipped on the Endevor installation tape. You activate Endevor
ACM by specifying Y in the ASCM field in the Endevor C1DEFLTS Table as shown
below (i.e., ASCM=Y, to set on; ASCM=N, to set off). You must also enable
processors by coding the PROC=Y prior to running Endevor ACM.

 Col.

1 16 72

↓ ↓ ↓

 C1DEFLTS TYPE=MAIN, X

 ...

ACMROOT=uprfx.uqual.root, ACM INDEX ROOT DATA SET NAME X

ACMXREF=uprfx.uqual.xref, ACM INDEX XREF DATA SET NAME X

 ...

ASCM=Y, ASCM CONTROL OPTION (Y/N) X

 ...

 PROC=Y,

1. To ensure that you have successfully enabled Endevor ACM, select option 1
(DISPLAY) on the Primary Options Menu and press ENTER. Endevor displays
the Display Options Menu.

� �
--------------------------- DISPLAY OPTIONS MENU --------------------------

OPTION ===>

1 ELEMENT - Display element/component list information

2 FOOTPRINT - Display footprinted members and compressed listings

3 SITE - Display site information

4 STAGE - Display stage information

5 SYSTEM - Display system definitions

6 SUBSYSTEM - Display subsystem definitions

7 TYPE - Display type definitions

8 PROCESSOR GROUP - Display processor group definitions

9 APPROVER GROUP - Display approver groups

A RELATE GROUP - Display inventory area/approver group relationships

E ENVIRONMENT - Display information about the current environment

� �

2-4 Automated Configuration Option Guide

2.3 Enabling Endevor ACM and the ACM Query Facility

2. Select option 3 (SITE) and press ENTER. Endevor displays the Site Information
panels.

� �
 ---------------------- Site Information from C1DEFLTS -------------------------

 Command ===>

Customer Name..... Computer Associates Inc., Endevor Development

------------------ Function Controls -------------------- - Options -

Site ID........... � Access Table...... BC1TNEQU ASCM..... Y

Release........... B4���C SMF Record Number. 23� DB2...... Y

Environments...... 4 Library System.... LB EDITELM.. Y

Userid Start...... 1 Library Program... AFOLIBR ELINK.... Y

Userid Length..... 7 VIO Unit.......... VIO ESSI..... Y

Batch ID.......... 1 Work Unit......... SYSDA INFO..... N

SPFEDIT QNAME..... SPFEDIT Work Volser....... LIBENV... Y

SYSIEWL QNAME..... SYSIEWLP Lines per Page.... 6� NETMAN... N

Authorized Tables. IGNORE MODHLI............ BST PDM...... N

Gen in place/SO... Y Signout on fetch.. N PROC..... Y

CA-LSERV JRNL SBS. ELINK XLTE TBL....

PITR Journal Grp.. Mixed Format...... COMMENT DESCRIPTION

SYMBOLICS Table... ESYMBOLS

(Press Enter for Next Panel)

� �

3. Check the ASCM and PROC OPTIONS. If Endevor ACM is enabled, Endevor
displays a "Y" in these fields.

2.3.2 Activating the ACM Query Facility

To activate the ACM Query Facility you must perform the following steps:

1. Modify C1DEFLTS Table

2. Estimate Root and Cross-reference data sets space requirements

3. Define and initialize Root and Cross-reference data sets

4. Load Root and Cross-reference data sets

2.3.2.1 Step 1 — Modify C1DEFLTS Table

1. Update the C1DEFLTS Table with the ACM Root and Cross-reference data sets.

C1DEFLTS TYPE=MAIN,

 ...

 ACMROOT=uprfx.uqual.root, ACM INDEX ROOT DATA SET NAME

 ACMXREF=uprfx.uqual.xref, ACM INDEX XREF DATA SET NAME

 ...

2. Assemble and link your C1DEFLTS.

Chapter 2. Basic Operation 2-5

2.3 Enabling Endevor ACM and the ACM Query Facility

3. To ensure that you have successfully enabled Endevor ACM, select option 1
(DISPLAY) on the Primary Options Menu and press ENTER. Endevor displays
the Display Options Menu.

� �
--------------------------- DISPLAY OPTIONS MENU --------------------------

OPTION ===>

1 ELEMENT - Display element/component list information

2 FOOTPRINT - Display footprinted members and compressed listings

3 SITE - Display site information

4 STAGE - Display stage information

5 SYSTEM - Display system definitions

6 SUBSYSTEM - Display subsystem definitions

7 TYPE - Display type definitions

8 PROCESSOR GROUP - Display processor group definitions

9 APPROVER GROUP - Display approver groups

A RELATE GROUP - Display inventory area/approver group relationships

E ENVIRONMENT - Display information about the current environment

� �

4. Select option 3 (SITE) and press ENTER. Endevor displays the Site Information
panels.

� �
 ---------------------- Site Information from C1DEFLTS -------------------------

 Command ===>

Customer Name..... Computer Associates Inc., Endevor Development

------------------ Function Controls -------------------- - Options -

Site ID........... � Access Table...... BC1TNEQU ASCM..... Y

Release........... B4���C SMF Record Number. 23� DB2...... Y

Environments...... 4 Library System.... LB EDITELM.. Y

Userid Start...... 1 Library Program... AFOLIBR ELINK.... Y

Userid Length..... 7 VIO Unit.......... VIO ESSI..... Y

Batch ID.......... 1 Work Unit......... SYSDA INFO..... N

SPFEDIT QNAME..... SPFEDIT Work Volser....... LIBENV... Y

SYSIEWL QNAME..... SYSIEWLP Lines per Page.... 6� NETMAN... N

Authorized Tables. IGNORE MODHLI............ BST PDM...... N

Gen in place/SO... Y Signout on fetch.. N PROC..... Y

CA-LSERV JRNL SBS. ELINK XLTE TBL....

PITR Journal Grp.. Mixed Format...... COMMENT DESCRIPTION

SYMBOLICS Table... ESYMBOLS

(Press Enter for Next Panel)

� �

5. Check the ASCM field under OPTIONS. If Endevor ACM is enabled, Endevor
displays a "Y" in this field.

2-6 Automated Configuration Option Guide

2.3 Enabling Endevor ACM and the ACM Query Facility

The panel displays the Root and Cross-reference data set names.

� �
 ---------------------- Site Information from C1DEFLTS -------------------------

 Command ===>

------------------------- Package Processing Options -------------------------

Approval Required..... Y Cast Security......... N Security.. ESI

Foreground Execution.. Y Component Validation.. O

High-level Index for Generated Remote Pkg Ship JCL...

--------------------------- Control Data Set Names ---------------------------

Element Catalog............ BST.DEVEL.ELMCATL

Package Control File....... BST.DEVR4�.VSAMRLS.PACKAGE

Installation Macro Library. BST.P4�B4�S2.MACLIB

CCID Validation Data Set...

ACM Index Root Data Set.... BST.NDVR4��.ACMROOT

ACM Index Xref Data Set.... BST.NDVR4��.ACMXREF

--------------------------- CA-7 Interface Values ----------------------------

CA-7 Region CCI Nodename... A44SENF

JCL Data Set Index Number..

JCL Data Set Index Symbol.. &ENDEVOR

JCL Data Set Name.......... APCDAL.ENDEVOR.JCLLIB

. .

Menu Utilities Compilers Help

� �

Note: If you are implementing Endevor for the first time, you must estimate the
number of elements to add to Endevor, and then proceed to Step 2 to calculate
space requirements.

2.3.2.2 Step 2 — Estimate Root and Cross-reference Data Sets Space
Requirements

The ACM Query Facility's Root and Cross-reference data sets consist of the following:

■ The Root data set contains the names of each Endevor element and all related
components.

■ The Cross-reference data set contains a record for each component relationship.

Estimate the size of the Root and Cross-reference data sets for Endevor ACM Query
Facility by doing the following:

1. Execute the SYSTEM INVENTORY SUMMARY REPORT (CONRPT02) to get
an overall count of Endevor elements. Increase this value by 50% (i.e., if the
report determines that there are 4000 elements, the estimated total elements should
be increased to 6000 to include related components which are not Endevor
elements).

Note: You must have already assembled the C1DEFLTS Table with the ACM
Root and Cross-reference data sets prior to the execution of this JCL.

2. A 3390 cylinder can hold approximately 6000 components. Using the value
obtained above, allocate enough cylinders to accommodate your current inventory
and future expansion. This value represents the primary and secondary allocation
of the Root file.

Chapter 2. Basic Operation 2-7

2.3 Enabling Endevor ACM and the ACM Query Facility

3. Multiply the composite element total from the first step by 10 to estimate the total
number of relationships to be added in the XREF file (i.e., 6000 * 10 = 60,000
estimated relationships).

4. A 3390 cylinder can hold approximately 120,000 relationships. Using the value
obtained in the previous step, allocate enough cylinders to accommodate your
current inventory and future expansion. This value represents the primary and
secondary allocation of the XREF file.

2.3.2.3 Step 3 — Define and Initialize Root and Cross-Reference Data Sets

Note: Proceed to Step 4 if you are an existing ACM user and want to populate Root
and Cross-reference files.

1. Use member BC1JACMD, located in iprfx.iqual.JCLLIB, to define (create) the
Root and Cross-reference data sets.

2. Edit member BC1JACMD to add the space requirement information that you
calculated in Step 2.

3. Change the following variables:

■ iprfx — Highest-level qualifier used when assigning data set names for
installation and execution data sets.

■ iqual — Second-level qualifier used when assigning data set names for
installation and execution data sets.

■ vvolser — Volume serial number of the disk on which the MCF and package
data sets will be allocated.

4. Follow the instructions in BC1JACMD to further tailor the JCL. After you have
tailored the JCL, make sure you have a valid JOBCARD, and submit the JOB to
create and initialize the Root and Cross-reference data sets.

2-8 Automated Configuration Option Guide

2.3 Enabling Endevor ACM and the ACM Query Facility

//�(JOBCARD)

//�---�

//� �

//� (C) 2��2 COMPUTER ASSOCIATES INTERNATIONAL, INC. �

//� �

//� NAME: BC1JACMD �

//� �

//� FUNCTION: THIS JOB IS USED TO DEFINE THE ACM QUERY ROOT AND �

//� CROSS-REFERENCE DATA SETS. �

//� �

//� 1) ADD A VALID JOB CARD AT THE FRONT OF THE JOB STREAM �

//� 2) CHANGE THE DATASET NAMES AND OTHER VARIABLES �

//� TO APPROPRIATE VALUES FOR YOUR INSTALLATION. �

//� �

//� NOTE1: THE NAMES IN THE CLUSTER DEFINES MUST MATCH THE ACMROOT �

//� AND ACMXREF DATA SET NAME SPECIFICATIONS IN THE C1DEFLTS �

//� TABLE. �

//� �

//� NOTE2: ONE CYLINDER OF ACMROOT CAN HOLD 576� RECORDS. �

//� ONE CYLINDER OF ACMXREF CAN HOLD 12288� RELATIONS. �

//� AVOID SECONDARY EXTENTS FOR PERFORMANCE REASONS. �

//� �

//�---�

//�

//BC1JACMD EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

 DELETE 'UPRFX.UQUAL.ACMROOT' PURGE

 DELETE 'UPRFX.UQUAL.ACMXREF' PURGE

 SET MAXCC=�

 DEFINE CLUSTER (NAME('UPRFX.UQUAL.ACMROOT') -

CYLINDERS(15 5) -

 VOLUMES(VVOLSER) -

 SHAREOPTIONS(3,3) -

 LINEAR)

 DEFINE CLUSTER (NAME('UPRFX.UQUAL.ACMXREF') -

 CYLINDERS(5 2) -

 VOLUMES(VVOLSER) -

 SHAREOPTIONS(3,3) -

 LINEAR)

2.3.2.4 Step 4 — Load Root and Cross-Reference Data Sets

1. Use member BC1JACML, located in iprfx.iqual.JCLLIB, to extract existing ACM
component information from Endevor and load the ACM Root and
Cross-reference data sets.

You must modify the SCL control statements for Step 1 to specify the
environment name which represents the first environment in your environment
map. The PRINT action contains the SEARCH option so that ACM data
contained in the map will also be extracted. If you wish to extract ACM

Chapter 2. Basic Operation 2-9

2.3 Enabling Endevor ACM and the ACM Query Facility

component data from environments outside this map, you can specify additional
pair(s) of PRINT actions for these environments.

Note: Because this job can be very time consuming, you may elect to run it
multiple times selecting environments, systems, subsystems, types, and stages to
be locked.

2. Edit member BC1JACML to make the above modifications. Follow the
instructions in BC1JACML to further tailor the JCL. After you have tailored the
JCL, make sure you have a valid JOBCARD, and submit the job to load the Root
and Cross-reference data sets.

3. Change the following variables:

■ iprfx — Highest-level qualifier used when assigning data set names for
installation and execution data sets.

■ iqual — Second-level qualifier used when assigning data set names for
installation and execution data sets.

■ tdisk — Unit label for temporary disk data sets.

//�(JOBCARD)

//�---�

//� �

//� (C) 2��2 COMPUTER ASSOCIATES INTERNATIONAL, INC. �

//� �

//� NAME: BC1JACML �

//� �

//�---�

//� �

//� FUNCTION: THIS JOB EXTRACTS ACM COMPONENT DATA AND POPULATES �

//� THE ACM QUERY ROOT AND CROSS-REFERENCE DATA SETS. �

//� �

//� 1) ADD A VALID JOB CARD AT THE FRONT OF THE JOB STREAM �

//� 2) CHANGE THE DATASET NAMES AND OTHER VARIABLES �

//� TO APPROPRIATE VALUES FOR YOUR INSTALLATION. �

//� 3) UPDATE THE ENDEVOR PRINT ACTION SCL TO INCLUDE �

//� THE LOWEST ENVIRONMENT IN THE ENVIRONMENT MAP. �

//� �

2-10 Automated Configuration Option Guide

2.3 Enabling Endevor ACM and the ACM Query Facility

//� NOTE: �

//� YOU MAY WISH TO TAILOR THE PRINT ACTION SCL TO �

//� LIMIT THE EXTRACTION OF THE ACM COMPONENT DATA TO �

//� SPECIFIC ENVIRONMENTS AND STAGES AND EXECUTE THIS JOB �

//� MULTIPLE TIMES TO POPULATE THE ACM ROOT AND INDEX DATA �

//� SETS IN A PHASED APPROACH. �

//� IF YOU USE THIS METHOD, CONSIDER REMOVING THE SEARCH �

//� OPTION FROM THE PRINT SCL.

//� �

//�---�

//���

//�� ENSURE EXTRACT DATA SET DOES NOT ALREADY EXIST ��

//���

//STEP1 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

 DELETE UPRFX.UQUAL.ENVNAME.ACMCOMP.EXTRACT

SET LASTCC = �

//���

//�� EXTRACT ACM COMPONENT INFORMATION FROM ENDEVOR ��

//���

//STEP1 EXEC PGM=NDVRC1,DYNAMNBR=15��,PARM='C1BM3���',REGION=4�96K

//STEPLIB DD DISP=SHR,DSN=UPRFX.UQUAL.AUTHLIB

// DD DISP=SHR,DSN=IPRFX.IQUAL.AUTHLIB

//CONLIB DD DISP=SHR,DSN=IPRFX.IQUAL.CONLIB

//ACMMSGS1 DD SYSOUT=� MESSAGE OUTPUT

//C1PRINT DD SYSOUT=� PRINT ACTION FILE

//SYSOUT DD SYSOUT=�

//ACMCOMP DD DSN=UPRFX.UQUAL.ENVNAME.ACMCOMP.EXTRACT,

// DISP=(,CATLG,DELETE),

// UNIT=TDISK,SPACE=(CYL,(1��,5�),RLSE),

// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=�,DSORG=PS)

//BSTIPT�1 DD �

PRINT ELEMENT �

FROM ENV ENVNAME SYSTEM � SUBSYSTEM � TYPE � STAGE �

TO FILE ACMCOMP

OPTIONS COMPONENT BROWSE

//���

//�� POPULATE THE ACM QUERY ROOT AND CROSS-REFERENCE DATA SETS ��

//���

//LOAD EXEC PGM=NDVRC1,PARM='BC1PACMO'

//STEPLIB DD DISP=SHR,DSN=UPRFX.UQUAL.AUTHLIB

// DD DISP=SHR,DSN=IPRFX.IQUAL.AUTHLIB

//CONLIB DD DISP=SHR,DSN=IPRFX.IQUAL.CONLIB

//SYSPRINT DD SYSOUT=�

//SYSOUT DD SYSOUT=�

//ACMMSGS1 DD SYSOUT=�

//ACMCOMP DD DSN=UPRFX.UQUAL.ENVNAME.ACMCOMP.EXTRACT,

// DISP=(OLD,DELETE,KEEP)

Chapter 2. Basic Operation 2-11

2.3 Enabling Endevor ACM and the ACM Query Facility

The JCL member BC1JACMQ, located in iprfx.iqual.JCLLIB, is capable of producing
two reports to assist you in verifying that the ACM extended query index data sets
have been loaded. Depending on the form of the LIST syntax used when submitting
BC1JACMQ, it produces either a "components-used" or a "where-used" report.

To produce a "components-used" report, submit BC1JACMQ exactly as it is shown
below, making sure to first load the data sets.

To produce a "where-used" report, submit BC1JACMQ with "LIST USING" syntax (as
opposed to "LIST USED" syntax; see the boldfaced line of the JCL below).

//�(JOBCARD)

//�---�

//� �

//� (C) 2��2 COMPUTER ASSOCIATES INTERNATIONAL, INC. �

//� �

//� NAME: BC1JACMQ �

//� �

//� FUNCTION: THIS JOB PROVIDES CAN PROVIDE AN ACMQ QUERY REPORT �

//� BASED ON "WHERE USED" OR "COMPONENTS USED" FOR A �

//� SINGLE OR MULTIPLE ITEMS. �

//� �

//� 1) ADD A VALID JOB CARD AT THE FRONT OF THE JOB STREAM �

//� 2) CHANGE THE DATASET NAMES AND OTHER VARIABLES �

//� TO APPROPRIATE VALUES FOR YOUR INSTALLATION. �

//� 3) SPECIFY SCL PARAMETERS THAT ARE REQUIRED FOR YOUR QUERY. �

//� (REFER TO THE UTILITIES GUIDE FOR DETAILED INFORMATION �

//� REGARDING THIS UTILITY PROGRAM. �

//�---�

//���

//�� EXECUTE THE ACM QUERY EXPLOSION REPORT ��

//���

//STEP1 EXEC PGM=NDVRC1,PARM='BC1PACMQ'

//STEPLIB DD DISP=SHR,DSN=UPRFX.UQUAL.AUTHLIB

// DD DISP=SHR,DSN=IPRFX.IQUAL.AUTHLIB

//CONLIB DD DISP=SHR,DSN=IPRFX.IQUAL.CONLIB

//ACMOUT DD SYSOUT=�,DCB=RECFM=FBA

//ACMMSGS1 DD SYSOUT=�

//ACMMSGS2 DD SYSOUT=�

//ACMSCLIN DD �

 LIST USING COMPONENTS FOR

 ELEMENT 'NAME'

 ENVIRONMENT �

 SYSTEM �

 SUBSYSTEM �

 TYPE �

STAGE NUMBER �

 .

/�

2-12 Automated Configuration Option Guide

2.3 Enabling Endevor ACM and the ACM Query Facility

 2.3.2.5 Syntax

The syntax for BC1JACMQ is shown below:

��──SET──BUIld──ACTion──GENerate──CCId──ccid───────────────────────────�

�──COMment──comment──┤ LOC ├─ ─COPyback─ ──┬ ┬─SEArch─── ──────────────────�
 └ ┘─NOSearch─

�──LISt─ ──┬ ┬─USIng─ ─COMPonents FOR─────────────────────────────────────�
 └ ┘─USEd──

�─ ──┬ ┬─┤ LOC ├── ───────────────�
 ├ ┤─MEMber──member──DSName──dsname───────────────────
 ├ ┤─RELated ELEment──element─────────────────────────
 ├ ┤─RELated COMPonent MEMber──member──DSName──dsname─
 ├ ┤─RELated OBJect TEXt──'text'──────────────────────
 └ ┘─RELated COMment TEXt──'text'─────────────────────

�─ ──┬ ┬── ────────────────────────��
 └ ┘─OPTion FILter COMPonents WITh──┤ LOC ├─

LOC:
├─ ─ENVironment──environment─ ─SYStem──system──SUBsystem──subsystem──────�

�─ ─TYPe──type─ ──┬ ┬ ─STAge NUMber──stage number─ ─────────────────────────┤
 └ ┘ ─STAge──stage id────────────

Chapter 2. Basic Operation 2-13

2.3 Enabling Endevor ACM and the ACM Query Facility

 2.3.2.6 Output Examples

The following is a sample request for a "components-used" report:

1 (C) 2��2 Computer Associates International, Inc. 16APR�1 14:54:�5 PAGE 1

E N D E V O R S Y N T A X R E Q U E S T R E P O R T RELEASE X.X SERIAL XXXXXX

 REQUESTED BY: USER�1

14:54:�5 C1Y��15I STARTING PARSE OF REQUEST CARDS

 STATEMENT #1

 LIST USED COMPONENTS FOR ����39�3

ELEMENT BC1PFPVL ENVIRONMENT P4� ����4��3

 SYSTEM NDVRB4� SUBSYSTEM BASE ����41�2

TYPE ASMPGM STAGE NUMBER 2. ����42�3

Given the input shown above, Endevor returns the following "components-used"
report:

 1 (C) 2��2 Computer Associates International, Inc. 16APR�1 14:54:19 PAGE 1

ACM QUERY RESULTS RELEASE X.X SERIAL XXXXXX

 LVL ELEMENT TYPE ENVIRON SYSTEM SUBSYS STG

1 BC1PFPVL ASMPGM P4� NDVRB4� BASE 2

2 $CPYPARM ASMMAC P4� NDVRB4� BASE 2

2 $CP1PARM ASMMAC P4� NDVRB4� BASE 2

2 $C1VECTR ASMMAC P4� NDVRB4� BASE 2

 2 $IMR ASMMAC P4� NDVRB4� BASE 2

2 $LODADDR ASMMAC P4� NDVRB4� BASE 2

 2 @FPVLDS ASMMAC P4� NDVRB4� BASE 2

 2 @IMRDS ASMMAC P4� NDVRB4� BASE 2

 2 @MRPFDS ASMMAC P4� NDVRB4� BASE 2

 2 @STGDS ASMMAC P4� NDVRB4� BASE 2

2 CIMDPARM ASMMAC P4� NDVRB4� BASE 2

2 CIO1DSCT ASMMAC P4� NDVRB4� BASE 2

2 C1CALSUB ASMMAC P4� NDVRB4� BASE 2

2 C1DADSCT ASMMAC P4� NDVRB4� BASE 2

2 C1EDSECT ASMMAC P4� NDVRB4� BASE 2

2 C1MDSECT ASMMAC P4� NDVRB4� BASE 2

2 C1SUBOFF ASMMAC P4� NDVRB4� BASE 2

2 C1TTDSCT ASMMAC P4� NDVRB4� BASE 2

2 ENHOPTNS ASMMAC P4� NDVRB4� BASE 2

2 $$ABSEXP ASMMAC P4� NDVRB4� XP 2

 2 $$ADDR ASMMAC P4� NDVRB4� XP 2

Note: The "LVL" column indicates the nesting level of the member or element. For
example, in BC1PEIMG, type LNK uses "BC1PEIMG" type ASMPGM, which in turn
uses the macros CONMSGN, MSGPARS, and MSORT. The report also contains the
Endevor footprint information of the referenced element. If the referenced member is
not an element (or does not have an Endevor footprint), the report lists the data set
name where the member resides.

If the member does not reference any other members or elements, it is indicated with
the following report line:

1 @BINFOCF ASMMAC PRD NDVR976 INFO 2

ACMR��4I: ELEMENT contains no other elements

2-14 Automated Configuration Option Guide

2.3 Enabling Endevor ACM and the ACM Query Facility

The following is a sample request for a "where-used" report:

1 (C) 2��2 Computer Associates International, Inc. 16APR�1 14:51:�3 PAGE 1

E N D E V O R S Y N T A X R E Q U E S T R E P O R T RELEASE X.X SERIAL XXXXXX

 REQUESTED BY: USER�1

14:51:�3 C1Y��15I STARTING PARSE OF REQUEST CARDS

 STATEMENT #1

LIST USING COMPONENTS FOR ����39�2

 ELEMENT @FPVLDS ENVIRONMENT P4� ����4��3

 SYSTEM NDVRB4� SUBSYSTEM BASE ����41�2

TYPE ASMMAC STAGE NUMBER 2. ����42�3

Given the input shown above, Endevor returns the following "where-used" report:

 1 (C) 2��2 Computer Associates International, Inc. 16APR�1 14:51:13 PAGE 1

ACM QUERY RESULTS RELEASE X.X SERIAL XXXXXX

 LVL ELEMENT TYPE ENVIRON SYSTEM SUBSYS STG

 1 @FPVLDS ASMMAC P4� NDVRB4� BASE 2

2 BC1PFPVL ASMPGM P4� NDVRB4� BASE 2

2 BC1PPKVC ASMPGM P4� NDVRB4� BASE 2

2 C1BR3�3� ASMPGM P4� NDVRB4� BASE 2

3 C1BR1��� LNK P4� NDVRB4� BASE 2

3 C1BR1��� LNK I4� NDVRMVS BASE 2

Chapter 2. Basic Operation 2-15

2.3 Enabling Endevor ACM and the ACM Query Facility

The following is a sample request for an SCL-formatted "where-used" report:

1 (C) 2��2 Computer Associates International, Inc. 16APR�1 14:48:5� PAGE 1

E N D E V O R S Y N T A X R E Q U E S T R E P O R T RELEASE X.X SERIAL XXXXXX

 REQUESTED BY: USER�1

14:48:5� C1Y��15I STARTING PARSE OF REQUEST CARDS

 STATEMENT #1

SET BUILD ACTION GENERATE CCID LMSG COMMENT BC1PLMSG ����36�2

FROM ENVIRONMENT I4� STAGE NUM 2 COPYBACK SEARCH. ����37�2

 STATEMENT #2

LIST USING COMPONENTS FOR ����39�2

 ELEMENT @FPVLDS ENVIRONMENT P4� ����4��3

 SYSTEM NDVRB4� SUBSYSTEM BASE ����41�2

TYPE ASMMAC STAGE NUMBER 2. ����42�3

Given the input above, Endevor returns the following SCL-formatted "where-used"
report:

SET OPTIONS CCID 'LMSG'

 COMMENT 'BC1PLMSG'

 COPYBACK SEARCH.

SET FROM ENVIRONMENT 'I4�'

STAGE NUMBER '2'.

GENERATE ELEMENT '@FPVLDS'

 FROM SYSTEM 'NDVRB4�'

 SUBSYSTEM 'BASE'

 TYPE 'ASMMAC'.

GENERATE ELEMENT 'BC1PFPVL'

 FROM SYSTEM 'NDVRB4�'

 SUBSYSTEM 'BASE'

 TYPE 'ASMPGM'.

GENERATE ELEMENT 'BC1PPKVC'

 FROM SYSTEM 'NDVRB4�'

 SUBSYSTEM 'BASE'

 TYPE 'ASMPGM'.

GENERATE ELEMENT 'C1BR3�3�'

 FROM SYSTEM 'NDVRB4�'

 SUBSYSTEM 'BASE'

 TYPE 'ASMPGM'.

GENERATE ELEMENT 'C1BR1���'

 FROM SYSTEM 'NDVRB4�'

 SUBSYSTEM 'BASE'

 TYPE 'LNK'.

GENERATE ELEMENT 'C1BR1���'

 FROM SYSTEM 'NDVRMVS'

 SUBSYSTEM 'BASE'

 TYPE 'LNK'.

2-16 Automated Configuration Option Guide

2.3 Enabling Endevor ACM and the ACM Query Facility

2.3.2.7 Maintaining the Root and Cross-reference Data Sets

ACM provides a batch job to maintain the ACM Query files. JCL BC1JACMO can
be found in iprfx.iqual.JCLLIB. This job should be executed on a regular basis to
ensure that these extraneous records do not impede ACM Query performance.

//�(JOBCARD)

//�---�

//� �

//� (C) 2��2 COMPUTER ASSOCIATES INTERNATIONAL, INC. �

//� �

//� NAME: BC1JACMO �

//� �

//� FUNCTION: THIS ENDEVOR JOB STEP REMOVES ROOT RECORDS FROM THE �

//� ENDEVOR ACM DATABASE WHEN THE ROOT PARTICIPATES AS �

//� NEITHER A PARENT OR A CHILD IN THE ACM XREF. �

//� �

//� IT ALSO IMPROVES THE ROOT FILE STRUCTURE AND BECAUSE �

//� OF THIS IMPROVES ACMQ RECORD INSERTION PERFORMANCE. �

//� �

//� RUN THIS JOB ONCE A DAY OR MORE FREQUENTLY IN CASE OF MANY �

//� ENDEVOR ELEMENT UPDATES �

//� �

//� 1) ADD A VALID JOB CARD AT THE FRONT OF THE JOB STREAM. �

//� 2) CHANGE THE DATASET NAMES AND OTHER VARIABLES �

//� TO APPROPRIATE VALUES FOR YOUR INSTALLATION. �

//� �

//�---�

//BC1JACMO EXEC PGM=NDVRC1,PARM='BC1PACMO'

//�

//STEPLIB DD DISP=SHR,DSN=UPRFX.UQUAL.AUTHLIB

// DD DISP=SHR,DSN=IPRFX.IQUAL.AUTHLIB

//CONLIB DD DISP=SHR,DSN=IPRFX.IQUAL.CONLIB

//SYSPRINT DD SYSOUT=�

//SYSOUT DD SYSOUT=�

//ACMMSGS1 DD SYSOUT=�

Chapter 2. Basic Operation 2-17

2.4 Monitoring and Collecting Data

2.4 Monitoring and Collecting Data

2.4.1 After You've Enabled ACM

Once Endevor ACM is enabled, you are ready to begin automatic monitoring of
components during Endevor processor execution. Generate and move processors can
be monitored.

2.4.2 The Component Monitor

Endevor ACM has been built to be compatible with source translators (COBOL
compilers, assemblers, PL/1 compilers, and linkage editors) without modification.
These translators resolve element-to-component relationships by reading in
components—called "input components"—from specific libraries. Utilities such as the
linkage editor, CONLIST, create and write members—called "output components"—to
various libraries.

The Endevor ACM Component Monitor automatically and transparently captures
relationships by monitoring selected library data sets. You select the libraries you
want monitored by Endevor ACM through a processor.

The information captured by the Component Monitor includes the step name, DD
statement, volume, data set name, PDS or PDS/E directory and footprint information
(if it exists).

Optionally, ACM provides the CONSCAN processor utility to add additional
component information.

Note: Refer to the Extended Processors Guide for more details about using this
utility.

2.4.2.1 Program Object Support

The IBM program product DFSMS/MVS 1.1 (now known as DFSMS z/OS)
introduced a new executable storage format called program objects, which are stored
in PDS/E data sets with undefined record format (otherwise known as 'PDS/E load
libraries'). Program objects are functionally similar to load modules, but relieve many
of the restrictions of conventional load modules. They are created by a utility which
replaces the linkage editor, called the binder.

With DFSMS/MVS 1.1 installed, processor steps which execute IEWL—the old
linkage editor—actually execute the binder. Note that component monitoring during
execution of the binder and any other utilities which manipulate program objects also
requires the use of the IEWBIND programming interface or the Directory Entry
Services (DESERV) programming interfaces in DFSMS/MVS 1.3.

2-18 Automated Configuration Option Guide

2.4 Monitoring and Collecting Data

2.4.3 Activating the Endevor ACM Component Monitor

When activated, Endevor ACM's Component Monitor automatically tracks and
captures program-component relationships as specified in the processor definition. To
activate the Component Monitor, you simply add the keyword
MONITOR=COMPONENTS onto the Endevor processor DD statements that you
want to monitor.

2.4.4 Monitoring Components in Dynamically Allocated Data Sets

There are cases when a user program in a processor dynamically allocates datasets.
Typical examples are IKJEFT01 and EDCPRLK. When these programs read from or
write to these data sets, you do not have control over the following parameters:

 ■ MONITOR=COMPONENTS

 ■ BACKOUT=N

 ■ FOOTPRINT=CREATE

As a result, Endevor chooses the default values for parameters, which means that by
default:

■ No components will be monitored

■ Backouts will be written

■ No footprints will be written

In order to modify these parameters, you can specify a DD name starting with
“EN$DYN” to define one or more data set names (in a concatenation) with their
monitor/backout/footprint specifications.

Note that Endevor does not support FOOTPRNT=CREATE on a concatenated data set.
In case this is required, more than one EN$DYNXX statement will be required.

In the following example, no backout records will be written to file &SYSLIB1, even
if IKJEFT01 allocates it and writes members to &SYSLIB1. Similarly, all members
created in SYSLIB2 will be footprinted.

//STEP1EXEC PGM=IKJEFT�1

//EN$DYN�� DD DISP=SHR,DSN=&SYSLIB1,BACKOUT=NO

//EN$DYNM DD DISP=SHR,DSN=&SYSLIB2,FOOTPRNT=CREATE

In the next example, components will be monitored from all files in the SYSLIB
concatenation, even if EDCPRLK reallocates each file separately under another DD
name.

//PRELINK EXEC PGM=EDCPRLK

//SYSLIB DD DISP=SHR,DSN=&SYSLIB1,MONITOR=COMPONENTS

// DD DISP=SHR,DSN=&SYSLIB2,MONITOR=COMPONENTS ETC.

//EN$DYNDS DD DISP=SHR,DSN=&SYSLIB1,MONITOR=COMPONENTS

// DD DISP=SHR,DSN=&SYSLIB2,MONITOR=COMPONENTS ETC.

Chapter 2. Basic Operation 2-19

2.4 Monitoring and Collecting Data

Note that in the above example, the MONITOR=COMPONENTS statements can be
removed from the SYSLIB concatenation, as their presence on the EN$DYNDS DD
statement will cause all their components to be monitored regardless of the DD name
under which the file is eventually (re-) allocated.

2.4.4.1 Monitoring Input Components

Typical input components would be INCLUDE object modules, load modules, program
objects, copybooks, and CALLed modules. COBOL compilers, for example, read in
copybooks from a SYSLIB DD statement. Thus, for each data set in the SYSLIB
concatenation, you would code MONITOR=COMPONENTS, as shown in the
following example:

//SYSLIB DD DSN=BST.C1DEMO.COPYLIB1,DISP=SHR,MONITOR=COMPONENTS

// DD DSN=BST.C1DEMO.COPYLIB2,DISP=SHR,MONITOR=COMPONENTS

2.4.4.2 Monitoring Output Components

Typical outputs would be load modules, program objects, object decks, and listings.
The linkage editor, for example, writes load modules to a SYSLMOD DD statement.
For each output data set you want to monitor, code MONITOR=COMPONENTS, as
shown in the following example:

//SYSLMOD DD DSN=BST.C1DEMO.LOADLIB1,DISP=SHR,MONITOR=COMPONENTS

2.4.5 Monitoring Components in a Generate Processor

Any data set defined to a program within a processor can be monitored by the
Component Monitor. The following programs are typically used in a generate
processor. This sampling represents DD statements containing data sets that would
normally warrant monitoring.

Note: The Component Monitor does not support programs that use EXCP (such as
IEBCOPY) to perform I/O operations.

You are not restricted to the programs identified below.

Program DDNAME Notes

CONWRITE ddname CONWRITE writes to the first DDname after the
EXEC statement. To monitor components
expanded by CONWRITE (namely INCLUDEs),
code MONITOR=COMPONENTS on the
DDname. If MONITOR=COMPONENT is
coded, make sure the parameter is set at
PARM=EXPINCL(Y). Endevor ACM will then
monitor for input components.

IKFCBL00 SYSLIB Input components (usually copylibs not
COBOLlibs).

2-20 Automated Configuration Option Guide

2.4 Monitoring and Collecting Data

The MONITOR=COMPONENTS keyword can be coded on any DD statement within
an Endevor generate or move processor. As a general rule, you would not code
MONITOR=COMPONENTS on STEPLIBs, SYSUTn, or temporary data sets.

Program DDNAME Notes

SYSLIN Output components. Code only if writing to
permanent data set.

SYSPRINT Output components. Code only if writing to a
permanent data set.

IEWL SYSLIB Input components (usually utilities not
COBOLlibs).

SYSLMOD Output components.

SYSLIN Input components. Code only if writing to a
permanent data set.

ddname Any data set that may be referenced by linkage
editor control cards.

CONLIST C1LLIB0 Output components.

2.4.6 Monitoring Components in a Move Processor

Typically, the move processor is coded to perform two generic functions: 1) to
perform a translation (compile and link-edit), and 2) to move a load module and any
other Stage 1 members created by the Stage 1 generate processor.

■ If you code a move processor to perform a translation (for example, compile,
link-edit), code MONITOR=COMPONENTS as described in Monitoring
Components in a Generate Processor.

■ If you code a move processor in order to move load modules, listings, etc. from
Stage 1 to Stage 2, you might also want to move the current (version/level) of the
Component List. You can do this using a special processor utility BC1PMVCL,
which is provided with Endevor ACM. To execute this program, code a step in
the Endevor move processor that specifies the EXEC statement with a MAXRC=0,
as illustrated below:

//MOVE EXEC PGM=BC1PMVCL,MAXRC=�

Now when the element in Stage 1 is moved to Stage 2, its corresponding Component
List (containing all the element-to-component relationships) will also be moved to
Stage 2.

Chapter 2. Basic Operation 2-21

2.4 Monitoring and Collecting Data

2.4.7 No Monitoring of Components in a Delete Processor

The delete processor runs as the result of a DELETE action. When the DELETE
action is executed, both the element and its associated Component List are deleted.
Therefore, you should not monitor a delete processor.

Note: Changing processor groups invokes the delete processor.

2.4.7.1 Sample Generate Processor + MONITOR=COMPONENTS

In the following example, we've decided to monitor several data sets in the Endevor
generate processor GCOBNBL; therefore, we have added the keyword
MONITOR=COMPONENTS after those data sets. An explanation describing why
each data set was selected for monitoring is included below each example.

//���

//�� ��

//�� COBOL COMPILE AND LINK-EDIT PROCESSOR ��

//�� ��

//�� ��

//�� ��

//���

//��

//GCOBNBL PROC COBLIB='SYS1.VSCLLIB',

// COBSTPLB='SYS1.VSCOLIB',

// CSYSLIB1='uprfx.uqual1.COPYLIB',

// CSYSLIB2='uprfx.uqual2.COPYLIB',

// EXPINC=N,

// LISTLIB='uprfx.uqual1.LISTING',

// LOADLIB='uprfx.uqual1.LOADLIB',

// LSYSLIB1='uprfx.uqual1.LOADLIB',

// LSYSLIB2='uprfx.uqual2.LOADLIB',

// MEMBER=&C1ELEMENT,

// PARMCOB='LIB,NOSEQ,OBJECT,PMAP,DMAP,LANGLVL(1)',

// PARMLNK='LIST,MAP,SIZE(9999K)',

// SYSOUT=A,

// WRKUNIT=tdisk

//��

//��

//� ALLOCATE TEMPORARY LISTING DATA SETS �

//��

//�

//INIT EXEC PGM=BC1PDSIN,MAXRC=�

//C1INIT�1 DD DSN=&&COBLIST,DISP=(,PASS,DELETE),

// UNIT=&WRKUNIT,SPACE=(CYL,(1,2),RLSE),

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=6171,DSORG=PS)

//C1INIT�2 DD DSN=&&LNKLIST,DISP=(,PASS),

// UNIT=&WRKUNIT,SPACE=(CYL,(1,2),RLSE),

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=363�,DSORG=PS)

//�

Unlike the COBOL compiler or Linkage Editor steps, the CONWRITE step may not
contain DD statements for input. This is because CONWRITE can reference the
INCLUDE libraries as specified in the TYPE definition and searches for members
when expanding those INCLUDE statements. Therefore, in order to instruct

2-22 Automated Configuration Option Guide

2.4 Monitoring and Collecting Data

CONWRITE to monitor inputs, we've specified "MONITOR=COMPONENTS" in the
output statement (ELMOUT). This instructs the Component Monitor to monitor
CONWRITE as it expands INCLUDEs.

//��

//� GET THE SOURCE FROM THE BASE/DELTA LIBRARIES �

//��

//�

//CONWRITE EXEC PGM=CONWRITE,PARM='EXPINCL(&EXPINC)'

//ELMOUT DD DSN=&&ELMOUT,DISP=(,PASS),

// SPACE=(TRK,(1,1),RLSE),UNIT=&WRKUNIT,

// DCB=(RECFM=FB,LRECL=8�,BLKSIZE=312�),

// MONITOR=COMPONENTS

//��

//���

//�� COMPILE THE ELEMENT ��

The data sets specified by &CSYSLIB1 and &CSYSLIB2 are being monitored because
they are located where the COBOL compiler reads in copybooks. In this example, we
are monitoring (per the PROC statement) uprfx.uqual1.COPYLIB (Stage 1) and
uprfx.uqual2.COPYLIB (Stage 2). You don't want to monitor the &COBLIB DD
because this calls extraneous COBOL subroutines.

//���

//��

//COMPILE EXEC PGM=IKFCBL��,COND=(�,NE),MAXRC=4,

// PARM='&PARMCOB,BUF=512K,SIZE=1�24K'

//STEPLIB DD DSN=&COBSTPLB,DISP=SHR

//SYSLIB DD DSN=&CSYSLIB1,

// MONITOR=COMPONENTS,DISP=SHR

// DD DSN=&CSYSLIB2,

// MONITOR=COMPONENTS,DISP=SHR

//SYSIN DD DSN=&&ELMOUT,DISP=(OLD,DELETE)

//SYSLIN DD DSN=&&SYSLIN,DISP=(,PASS,DELETE),

// UNIT=&WRKUNIT,SPACE=(TRK,(3,5),RLSE),

// DCB=(RECFM=FB,LRECL=8�,BLKSIZE=312�),

// FOOTPRNT=CREATE

//SYSUT1 DD UNIT=&WRKUNIT,SPACE=(CYL,(1,1))

//SYSUT2 DD UNIT=&WRKUNIT,SPACE=(CYL,(1,1))

//SYSUT3 DD UNIT=&WRKUNIT,SPACE=(CYL,(1,1))

//SYSUT4 DD UNIT=&WRKUNIT,SPACE=(CYL,(1,1))

//SYSUT5 DD UNIT=&WRKUNIT,SPACE=(CYL,(1,1))

//SYSPRINT DD DSN=&&COBLIST,DISP=(OLD,PASS)

//��

//���

//�� LINK EDIT THE ELEMENT ��

//���

The data set indicated by &LOADLIB (uprfx.uqual1.LOADLIB in this example) is
monitored because it is where the Linkage Editor or binder stores the output
executable (load module or program object).

Chapter 2. Basic Operation 2-23

2.4 Monitoring and Collecting Data

//��

//LKED EXEC PGM=IEWL,COND=((�,NE,CONWRITE),(4,LT,COMPILE)),

// PARM='PARMLNK',MAXRC=4

//SYSLIN DD DSN=&&SYSLIN,DISP=(OLD,DELETE)

//SYSLMOD DD DSN=&LOADLIB(&MEMBER),

// MONITOR=COMPONENTS,DISP=SHR

//SYSLIB DD DSN=&LSYSLIB1,

SYSLIB is where the Linkage Editor or binder resolves CALL or INCLUDE
statements, based on inputs. In this example, we are monitoring the data sets indicated
by &LSYSLIB1 (uprfx.uqual1.LOADLIB - Stage 1) and &LSYSLIB2
(uprfx.uqual2.LOADLIB - Stage 2).

// MONITOR=COMPONENTS,DISP=SHR

// DD DSN=&LSYSLIB2,

// MONITOR=COMPONENTS,DISP=SHR

// DD DSN=&COBLIB,

//SYSUT1 DD UNIT=&WRKUNIT,SPACE=(CYL,(1,1))

//SYSPRINT DD DSN=&&LNKLIST,DISP=(OLD,PASS)

//��

//���

//� STORE THE LISTINGS IF: &LISTING=LISTING LIBRARY NAME �

//���

The data set indicated by &LISTLIB (uprfx.uqual1.LISTING, in this example) is being
monitored because "C1LLIBO" is where CONLIST writes its output listings.

//�

//CONLIST EXEC PGM=CONLIST,MAXRC=�,PARM=STORE,

// EXECIF=(&LISTLIB,NE,NO)

//C1LLIBO DD DSN=&LISTLIB,DISP=SHR,

// MONITOR=COMPONENTS

//C1BANNER DD UNIT=&WRKUNIT,SPACE=(TRK,(1,1)),

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=6171)

//LIST�1 DD DSN=&&COBLIST,DISP=(OLD,DELETE)

//LIST�2 DD DSN=&&LNKLIST,DISP=(OLD,DELETE)

//�

Since MONITOR=COMPONENTS has been specified after certain data sets within
GCOBNBL, Endevor ACM's Component Monitor is activated and automatically
collects changes to the components each time the generate processor is executed. The
change information for those data sets will be further stored as Endevor ACM
Component Lists in base/delta format.

2-24 Automated Configuration Option Guide

2.4 Monitoring and Collecting Data

2.4.7.2 Sample Move Processor

In the following sample move processor (MLODNNL), we've specified that when the
load module is moved from Stage 1 to Stage 2, its associated Component List
information is also moved.

//��

//� COPY LOAD MODULES FROM STAGE 1 TO STAGE 2 AND THEIR ASSOCIATED �

//� COMPONENT LIST AND LISTINGS. �

//��

//MLODNNL PROC LISTLIB1='uprfx.uqual1.LISTING',

// LISTLIB2='uprfx.uqual2.LISTING',

// LOADLIB1='uprfx.uqual1.LOADLIB',

// LOADLIB2='uprfx.uqual2.LOADLIB',

// MONITOR=COMPONENTS,

// SYSOUT=A,

// WRKUNIT=tdisk

//�

//��

//� ALLOCATE TEMPORARY LISTING DATA SETS �

//��

//INIT EXEC PGM=BC1PDSIN

//C1INIT�1 DD DSN=&©LIST,DISP=(,PASS,DELETE),

// UNIT=&WRKUNIT,SPACE=(CYL,(1,2),RLSE),

// DCB=(RECFM=V,LRECL=121,BLKSIZE=125,DSORG=PS)

//��

//� COPY THE LOAD MODULE �

//��

//BSTCOPY EXEC PGM=BSTCOPY,MAXRC=�4

//SYSPRINT DD DSN=&©LIST,DISP=(OLD,PASS)

//SYSUT3 DD UNIT=&WRKUNIT,SPACE=(TRK,(1,1))

//SYSUT4 DD UNIT=&WRKUNIT,SPACE=(TRK,(1,1))

//INDD DD DSN=&LOADLIB1,DISP=SHR

//OUTDD DD DSN=&LOADLIB2,DISP=SHR

//SYSIN DD �

 COPY O=OUTDD,I=INDD

 SELECT MEMBER=((&C1ELEMENT,,R))

//�

Chapter 2. Basic Operation 2-25

2.4 Monitoring and Collecting Data

The following step moves the component list:

//��

//� MOVE THE COMPONENT LIST �

//��

//MOVECL EXEC PGM=BC1PMVCL,COND=(�,NE),MAXRC=�

// EXECIF=(&MONITOR,EQ,COMPONENTS)

//�

//���

//� COPY & STORE THE LISTINGS IF: &LISTING2=LISTING LIBRARY �

//���

//COPYLIST EXEC PGM=CONLIST,PARM='COPY',COND=EVEN

// EXECIF=(&LISTLIB2,NE,NO)

//C1LLIBI DD DSN=&LISTLIB1,DISP=SHR

//C1LLIBO DD DSN=&LISTLIB2,DISP=SHR

//C1BANNER DD DSN=&&BANNER,DISP=(,PASS,DELETE),

// UNIT=&WRKUNIT,SPACE=(TRK,(1,1)),

// DCB=(RECFM=V,LRECL=121,BLKSIZE=125,DSORG=PS)

//LIST�1 DD DSN=&©LIST,DISP=(OLD,DELETE)

//�

//���

//� PRINT THE LISTINGS IF: &LISTING2=NO �

//���

//CONLIST EXEC PGM=CONLIST,MAXRC=�,PARM=PRINT,

// EXECIF=(&LISTLIB2,EQ,NO)

//C1BANNER DD UNIT=&WRKUNIT,SPACE=(TRK,(1,1)),

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=6171,DSORG=PS)

//C1PRINT DD SYSOUT=&SYSOUT,

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=6171,DSORG=PS)

//LIST�1 DD DSN=&©LIST,DISP=(OLD,DELETE)

2-26 Automated Configuration Option Guide

2.5 Storing Configuration Information

2.5 Storing Configuration Information

 2.5.1 Overview

The components which are monitored and collected by the Endevor ACM Component
Monitor are stored in the Endevor ACM component list. As the repository for
configuration information, this component list provides a "snapshot" of a
program—and the components which make up that program—each time a monitored
Endevor processor is executed.

If ACMIDXUP is set to 'Y' in the C1DEFLTS Table, the Root and Cross-reference
data sets are dynamically updated when the Endevor processor is executed.

2.5.2 The Component List

The Endevor ACM component list comprises six internal component categories:
element information, processor information, symbol information, input components,
output components and related data.

Each of these component categories provides an essential piece of the in-depth
information needed to analyze and manage software configurations.

■ Element Information — The Endevor source for which an Endevor processor is
being executed. It tells you what the originating Endevor element source was
when the component list was created.

■ Processor Information — The Endevor processor that is being executed for this
particular element. It contains the MONITOR=COMPONENTS keyword for
specific data sets, and tells you the specific Endevor processor used when the
component list was created.

■ Symbol Information — The symbolics that have been defined by the user for this
processor. It tells you the symbolic, the value that will be substituted for it when
the processor is run, and where that value has been defined — either directly in
the PROC statement of the processor or as overridden through the Processor
Group Symbolics panel.

■ Input Components — The members in the monitored data sets which are read by
programs (such as the compiler or linkage editor) in the Endevor processor when
it collects components to build composite modules. It tells you the related
"pieces" of the element and where they came from.

■ Output Components — The monitored data sets which are written to by
programs (such as the linkage editors or Endevor utilities) when composite
modules are created. It tells you the members created during processor execution.

The following diagram illustrates where the different pieces of component list
information are derived.

Chapter 2. Basic Operation 2-27

2.5 Storing Configuration Information

Sample Component List

What follows is a user's view of a component list for element FINAPP01, as captured
by the Component Monitor during execution of the Endevor generate process or. A
more detailed discussion of viewing component lists appears later in this chapter.

� �
���

���

�� ��

�� COMPONENT BROWSE 22MAY�1 11:25 ��

�� ��

�� ENVIRONMENT: DEMO SYSTEM: FINANCE SUBSYSTEM: ACCTPAY ��

�� ELEMENT: FINAPP�1 TYPE: COBOL STAGE: PROD ��

�� ��

���

���

---------------------- COMPONENT LEVEL INFORMATION ---------------------------

 VV.LL SYNC USER DATE TIME STMTS CCID COMMENT

 ----- ---- -------- ------- ---- ----- ------------ --

 �1.�� ZSXJMH1F 16APR�1 16:46 29 DEMO5 FINAL TEST GENERATION OF DEMO

 �1.�1 BSTUID8I �1MAY�1 12:5� 29 BSTUID8 CORRECT 3.5 DEMO

 �1.�2 BSTUID6B 15MAY�1 15:5� 29 DEMO RESTORING ELEMENTS INTO DEMO ENVIRONMENT

� �

2-28 Automated Configuration Option Guide

2.5 Storing Configuration Information

ELEMENT INFORMATION

Identifies the Endevor source for the element.

� �
-------------------------- ELEMENT INFORMATION ------------------------------

VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE GROUP STG STE ENVRMNT PROCESSOR

 +�1 �1.�3 3�APR�1 17:1� FINANCE ACCTPAY FINAPP�1 COBOL COBNBL 2 2 DEMO GCOBNBL

�

�

PROCESSOR INFORMATION

Identifies the Endevor processor executed for the element.

� �
------------------------ PROCESSOR INFORMATION ------------------------------

VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE GROUP STG STE ENVRMNT PROCESSOR

%+�2 �1.�� 15MAY�1 14:31 ADMIN STANDARD GCOBNBL PROCESS 1 2 DEMO

�

�

SYMBOL INFORMATION

Identifies the user-defined symbolics used within the processor and the values that
were substituted when the processor was run.

� �
-------------------------- SYMBOL INFORMATION ------------------------------

 DEFINED SYMBOL VALUE

+�� PROCESSOR COBLIB SYS1.VSCLLIB

+�� PROCESSOR COBSTPLB SYS1.VSCOLIB

 +�1 PROC GROUP CSYSLIB1 BST.EMVSDEMO.STG2.COPYLIB

+�1 PROCESSOR CSYSLIB2 BST.EMVSDEMO.STG2.COPYLIB

+�� PROCESSOR EXPINC N

 +�1 PROC GROUP LISTLIB BST.EMVSDEMO.STG2.LISTING

 +�1 PROC GROUP LOADLIB BST.EMVSDEMO.STG2.LOADLIB

 +�1 PROC GROUP LSYSLIB1 BST.EMVSDEMO.STG2.LOADLIB

+�1 PROCESSOR LSYSLIB2 BST.EMVSDEMO.STG2.LOADLIB

+�� PROCESSOR MEMBER &C1ELEMENT

+�� PROCESSOR MONITOR COMPONENTS

+�1 PROCESSOR PARMCOB LIB,NOSEQ,OBJECT,APOST,LANGLVL(1)

+�� PROCESSOR PARMLNK LIST,MAP,SIZE(9999K)

+�� PROCESSOR SYSOUT A

+�� PROCESSOR WRKUNIT SYSDA

� �

Chapter 2. Basic Operation 2-29

2.5 Storing Configuration Information

INPUT COMPONENTS

The copybook(s) and CALLed subroutine(s) read in by the Endevor processor at
execution.

� �
--------------------------- INPUT COMPONENTS ------------------------------

STEP: COMPILE DD=SYSLIB VOL=BST��1 DSN=BST.EMVSDEMO.STG2.COPYLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG STE ENVRMNT LD

%+�2 HEADER1 �1.�� 15MAY�1 15:41 FINANCE ACCTREC HEADER1 COPYBOOK 2 2 DEMOPROD

%+�2 PAGING �1.�� 15MAY�1 15:41 FINANCE ACCTREC PAGING COPYBOOK 2 2 DEMOPROD

STEP: LKED DD=SYSLIB VOL=BST��1 DSN=BST.EMVSDEMO.STG2.LOADLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG STE ENVRMNT LD

 +�1 FINAPS�1

�

�

OUTPUT COMPONENTS

The load module(s) written to Load Libraries and the listing(s) written to Listing
Libraries (in this particular example).

� �
--------------------------- OUTPUT COMPONENTS ------------------------------

STEP: LKED DD=SYSLMOD VOL=BST��1 DSN=BST.EMVSDEMO.STG2.LOADLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG STE ENVRMNT LD

%+�2 FINAPP�1

STEP: CONLIST DD=C1LLIBO VOL=BST��1 DSN=BST.EMVSDEMO.STG2.LISTING

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG STE ENVRMNT LD

%+�2 FINAPP�1 �1.�3 15MAY�1 15:5� FINANCE ACCTPAY FINAPP�1 COBOL 2 2 DEMO

�

�

2.5.3 Storing Component Lists

Each time a monitored Endevor processor is successfully executed, a new component
list is created. The following message appears at the end of the Endevor Execution
report, to indicate that update of the component list has begun:
hh:mm:ss C1C���1I BEGINNING UPDATE OF "ELEMENT NAME" COMPONENT LIST AT STAGE "STAGE NAME"

Whether processor execution succeeded or failed is indicated in one of two messages
which appear at the end of the Endevor Execution report. Those two messages are:
hh:mm:ss C1C���2I "ELEMENT NAME" COMPONENT LIST VERSION "VV.LL" SUCCESSFULLY CREATED AT STAGE (STAGE NAME)

The component list is kept and compared to the previous component list (if any).
Differences between component lists create a new level as indicated by message
C1C0002I. Both the component list base and delta members will be stored in the delta
library defined on the type definition.

If the ACM Query Facility has been activated and the ACMIDXUP option has been
set to 'Y' in the C1DEFLTS Table, then the information contained in the component
list will be used to update the ACM Query Facility Root and Cross-reference data sets.

2-30 Automated Configuration Option Guide

2.5 Storing Configuration Information

 2.5.3.1 Base/Delta Technology

The first time an Endevor ACM component list is produced for a processor, it
becomes the base. Subsequent processor executions create new component lists, which
are automatically compared against the base to reflect component changes. Endevor
ACM gives each set of changes (delta) a new component level number. These base
and deltas are stored in base and delta libraries as defined in the element type
definition.

 2.5.3.2 Component Levels

The component level is indicated in the COMPONENT LEVEL INFORMATION
section of the component list as shown below.

� �
��

���

�� ��

�� COMPONENT BROWSE 22MAY�1 11:25 ��

�� ��

�� ENVIRONMENT: DEMO SYSTEM: FINANCE SUBSYSTEM: ACCTPAY ��

�� ELEMENT: FINAPP�1 TYPE: COBOL STAGE: PROD ��

�� ��

���

���

---------------------- COMPONENT LEVEL INFORMATION ---------------------------

 VV.LL SYNC USER DATE TIME STMTS CCID COMMENT

 ----- ---- -------- ------- ----- ----- ------------ --

 �1.�� ZSXJMH1F 16APR�1 16:46 29 DEMO5 FINAL TEST GENERATION OF DEMO

 �1.�1 BSTUID8I �1MAY�1 12:5� 29 BSTUID8 CORRECT 3.5 DEMO

 �1.�2 BSTUID6B 15MAY�1 15:5� 29 DEMO RESTORING ELEMENTS INTO DEMO ENVIRONMENT

-------------------------- ELEMENT INFORMATION ------------------------------

VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE GROUP STG STE ENVRMNT PROCESSOR

 +�1 �1.�3 3�APR�1 17:1� FINANCE ACCTPAY FINAPP�1 COBOL COBNBL 2 2 DEMO GCOBNBL

�

�

Chapter 2. Basic Operation 2-31

2.5 Storing Configuration Information

2.5.3.3 CONSCAN Processor Utility

The CONSCAN processor utility provides an additional mechanism for ACM to
capture configuration information. A typical usage of this facility would be to capture
the JCL—program relationships or JCL—data set name relationships. The captured
relationship information can be added to ACM using the CONRELE processor utility.
CONSCAN also creates control statements to be used by CONRELE to update
component information.

Note: Refer to the Extended Processors Guide for more information about this utility.

2.5.3.4 Difference between Component Level and Element Level

Notice that the component level in the example above is at 01.02, but the element
level is 01.03. This discrepancy is valid because there is absolutely no correlation
between the component level and the element level.

Component levels are created each time a component list is generated and has changed
since the last generation. Component-level numbers are merely relative to the most
recent generation; for example, if component level 01.53 is the most recent level, level
01.52 is the one immediately preceding it, and so forth.

The element level, on the other hand, is automatically increased each time the element
is updated, regardless of whether or not the processor executed successfully.

2-32 Automated Configuration Option Guide

2.5 Storing Configuration Information

2.5.3.5 Component Levels Renumbered

In order to eliminate massive storage considerations, there is a limit to the number of
component levels which are stored in Endevor. Starting at level 00, component levels
are stored up until level 96 by default. At this point, when Endevor ACM is about to
create another component list (and, hence, another component level), the first 50
component levels are deleted, and component levels 51 through 96 are renumbered as
component levels 00 through 49. This process is repeated each time component level
96 is passed. What's important to remember is that, at any point in time, component
level 00 is always considered to be the base, with subsequent component levels treated
as deltas.

Chapter 2. Basic Operation 2-33

2.6 Viewing Component Lists

2.6 Viewing Component Lists

 2.6.1 Procedure

To view component list information:

1. Access the Primary Options Menu.

� �
 --------------- AllFusion Endevor Primary Options Panel ---------------------

 Option ===>

 � DEFAULTS - Specify Endevor ISPF default parameters

 1 DISPLAY - Perform Display functions

 2 FOREGROUND - Execute Foreground Actions

 3 BATCH - Perform Batch Action processing

 4 ENVIRONMENT - Define or Modify Environment information

 5 PACKAGE - Perform Foreground Package processing

 6 BATCH PACKAGE - Perform Batch Package SCL Generation

 U USER MENU - Display user option menu

 T TUTORIAL - Display information about Endevor

 C CHANGES - Display summary of changes for this release of Endevor

 X EXIT - Exit the Endevor dialog

Current environment: Q4�

(C) 2��2 Computer Associates International, Inc.

 Use the EXIT option to terminate Endevor

� �

2-34 Automated Configuration Option Guide

2.6 Viewing Component Lists

2. Select option 1 (DISPLAY) and press ENTER. Endevor displays the Display
Options Menu.

� �
------------------------- DISPLAY OPTIONS MENU ----------------------------

OPTION ===>

1 ELEMENT - Display element/component list information

2 FOOTPRINT - Display footprinted members and compressed listings

3 SITE - Display site information

4 STAGE - Display stage information

5 SYSTEM - Display system definitions

6 SUBSYSTEM - Display subsystem definitions

7 TYPE - Display type definitions

8 PROCESSOR GROUP - Display processor group definitions

9 APPROVER GROUP - Display approver groups

A RELATE GROUP - Display inventory area/approver group relationships

E ENVIRONMENT - Display information about the current environment

� �

3. Select option 1 (ELEMENT) and press ENTER. Endevor displays the Display
Elements/Components Lists panel. From this panel you can view different types
of information about Components lists.

� �
--------------- Display Elements/Component Lists ---------------------

 OPTION ===>

blank - Display selection list B - Browse element current level

S - Display summary of levels C - Display changes current level

M - Display element master info H - Display history current level

Enter SX, BX, CX or HX to display component list information

 FROM Endevor: LIST OPTIONS:

ENVIRONMENT ===> DEMO DISPLAY LIST ===> Y (Y/N)

SYSTEM ===> FINANCE WHERE CCID EQ ===>

 SUBSYSTEM ===> ACCTPAY WHERE PROC GRP EQ ===>

ELEMENT ===> DISPLAY SYS/SBS LIST ===> Y

 TYPE ===> COBOL

STAGE ===> Q - QA P - PROD

� �

4. Identify the element and the information that you want to display on this panel,
and press ENTER. The panel that Endevor displays next depends on the value in
the DISPLAY SYS/SBS LIST field:

■ If you provided a wildcard in the SYSTEM and/or SUBSYSTEM fields and
DISPLAY SYS/SBS LIST = Y, Endevor displays a System and/or Subsystem
Selection List. Make selections as necessary, pressing ENTER after each
selection. (For more information about System and Subsystem selection lists,
see the User Guide.)

■ Otherwise, proceed to Step 5.

Chapter 2. Basic Operation 2-35

2.6 Viewing Component Lists

5. If you provided a wildcard in the ELEMENT field, Endevor displays an Element
Selection List or Confirmation panel, as indicated in the following table:

DISPLAY LIST
=

BUILD USING MAP
=Y

BUILD USING MAP
=N

Y Endevor displays a
selection list of all
elements in all map
environments that meet
search criteria.

Default. Endevor
displays a selection list of
all elements in the current
environment that meet
search criteria

N Endevor displays a
confirmation panel,
indicating the number
of elements selected
(from all environments).

Endevor displays a
confirmation panel,
indicating the number of
elements selected (from
the current environment).

 2.6.2 WARNING

Use DISPLAY LIST = N with caution, especially in conjunction with BUILD USING
MAP = Y. When you press ENTER at a Confirmation panel, you will have to view
all the elements that have been selected.

Proceed as follows:

■ If a Confirmation panel appears, press ENTER to view the requested display for
the number of elements indicated on the Confirmation panel. (For more
information about Confirmation panels, see the User Guide.)

■ If an Element Selection List appears, use it to display information for one or more
elements. You can select any of the options discussed in the following section,
Option Field, by typing the option to the left of the element's name and pressing
ENTER. (For more information about Element Selection Lists, see the User
Guide.

To return to the previous panel, press END.

2.6.3 Display Element/Component Lists Panel Fields

The following sections describe Display Element/Component Lists panel fields.

2-36 Automated Configuration Option Guide

2.6 Viewing Component Lists

 2.6.3.1 Option Field

Use an option code to specify the information you wish to display. Options SX, BX,
CX, and HX are described in the following sections. The rest of the options are
described in the User Guide.

Select This Option To Display

Blank A list appropriate to the information supplied on the
panel, as described earlier.

S A Summary of Levels panel, showing a summary of
change history for the element requested. From this
panel you can select a specific level of the element for
display, using option B, C, or H.

M An Element Master panel, showing Master Control File
(MCF) information related to the element requested.

B An Element Browse panel, showing all statements in the
current level of the element, and the level at which each
statement was inserted.

C An Element Changes panel, showing all inserts and
deletions made to the element as of the current level.

H An Element History panel, showing all statements in all
levels of the element, from the base level through the
current level. The display shows the level at which
each insertion/deletion occurred.

SX A Summary of Levels panel, showing a summary of
change history for the component list requested. From
this panel you can select a specific level for display,
using option BX, CX, or HX.

BX A Component Browse panel, showing the component
information for the current level of the element, and the
level at which component was inserted.

CX A Component Changes panel, showing all inserts and
deletions made to the component information for the
element as of the current level.

HX A Component History panel, showing the component
information for all levels of the element, from the base
level through the current level. The display shows the
level at which each insertion/deletion occurred.

Chapter 2. Basic Operation 2-37

2.6 Viewing Component Lists

2.6.3.2 From Endevor Fields

These fields contain information to describe the Endevor location of the element.

Field Description

Environment Name of the environment under which the element
is defined (initially, the current environment). If the
element is in a different environment, enter the
environment's name in this field.

System Name of the system under which the element is
defined.

Subsystem Name of the subsystem under which the element is
defined.

Element Name of the element for which you want to display
information.

Type Name of the element's type.

Stage ID of the stage in which the element resides. This
must be one of the values shown to the right of the
field (unless you are changing environments).

2.6.3.3 List Options Fields

These options allow you to specify further the information you want to display.

Field Description

Display List Indicates whether you want to use list panels when
requesting this action: Y (yes) or N (no). The
default is Y.

Where CCID Eq Specifies a CCID that Endevor uses to limit the
selection list to only those elements whose last
CCID matches the specified CCID. If omitted,
Endevor does not limit the selection list by CCID.

Where Proc Grp Eq Specifies a processor group that Endevor uses to
limit the selection list to only those elements to
which the processor group has been assigned. If
omitted, Endevor does not limit the selection list by
process or group.

2-38 Automated Configuration Option Guide

2.6 Viewing Component Lists

Field Description

Display SYS/SBS List Indicates whether you want to go directly to the
Element Selection List from the Display
Elements/Component Lists panel. Acceptable values
are:

■ Y—Provide individual selection lists as required
by your entries on this panel.

■ N—Default. Bypass system and subsystem
selection lists.

Note: DISPLAY LIST = Y must be specified in
order to see any of these lists.

Build using map Indicates whether you want Endevor to search the
map, starting at the FROM location, when building
the Element Selection List. Acceptable values are:

■ Y—Search the map.

■ N—Default. Do not search the map.

Note: Avoid using BUILD USING MAP = Y in
combination with DISPLAY LIST = N.
You cannot cancel the build process once it
has begun.

2.6.4 Displaying Summary Information

To display a summary of component list levels, type SX in the OPTION field of the
Display Elements/Component Lists panel (or to the left of an element name on the
Element Selection List) and press ENTER. Endevor displays the Summary of Levels
panel.

� �
 ----------------------------- SUMMARY OF LEVELS ---------------- ROW 1 OF 3

 COMMAND ===> SCROLL ===> PAGE

 Environment: DEMO System: FINANCE Subsystem: ACCTPAY

Element: FINAPP�1 Type: COBOL Stage: P

 ----------------------- COMPONENT LEVEL INFORMATION -----------------------

VV.LL USER DATE TIME STMTS INSERTS DELETES SYNC

�1.�� ZSXJMH1F 16APR�1 16:46 29 � �

�1.�1 BSTUID8I �1MAY�1 12:5� 29 14 14

�1.�2 BSTUID6B 15MAY�1 15:5� 29 5 5

 ������������������������������ BOTTOM OF DATA �����������������������������

� �

Chapter 2. Basic Operation 2-39

2.6 Viewing Component Lists

2.6.4.1 Summary of Levels Panel Field Descriptions

The fields on the Summary of Levels panel are described below.

Field Description

no title Selection field. Enter BX, HX or CX.

Environment The element's originating environment.

System Name of the system under which the element is defined.

Subsystem Name of the subsystem under which the element is
defined.

Element Name of the element for which the component list is being
displayed.

Type The element type for the element.

Stage The stage for the element.

VV.LL Version/Level of the component.

User The user whose job created the component list.

Date The date the component list was created.

Time The time the component list was created.

Stmts Total number of statements in the component list.

Inserts Number of lines inserted at this level of the component
list.

Deletes Number of lines deleted at this level of the component list.

Synch Indicates whether this level was created through
synchronization (S) or level consolidation (C).

2-40 Automated Configuration Option Guide

2.6 Viewing Component Lists

2.6.5 Using Browse Element (BX)

To view the current version/level of the element, FINAPP01, and its related
components, type BX in the OPTION field of the Display Elements/Component List
panel (or to the left of an element name on the Element Selection List) and press
ENTER. Endevor displays the current version of the element and its related
components as in the following example:

� �
��������������������������������� TOP OF DATA ���������������������������������

���

���

�� ��

�� COMPONENT BROWSE 14MAY�1 13:36 ��

�� ��

�� ENVIRONMENT: QA SYSTEM: BG2 SUBSYSTEM: BG2 ��

�� ELEMENT: BGSQL631 TYPE: BGUCOMP2 STAGE: QASTG1 ��

�� ��

���

���

-------------------------- ELEMENT INFORMATION ------------------------------

VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE GROUP STG S

 +�� �1.�� 19MAR�1 12:22 BG2 BG2 BGSQL631 BGUCOMP2 BGUCOMP2 1

------------------------ PROCESSOR INFORMATION ------------------------------

VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE GROUP STG S

 +12 �1.�5 23APR�1 �9:27 BG2 BG2 BGUCOMP2 PROCESS 1

-------------------------- SYMBOL INFORMATION ------------------------------

 DEFINED SYMBOL VALUE

+�� PROCESSOR UNIT VIO

--------------------------- INPUT COMPONENTS ------------------------------

STEP: LINK DD=OBJLIB VOL=TSU�23 DSN=DA1BG1�.OBJLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

+�9 BGSQL6� �1.�� �5FEB�1 1�:35 BG2 BG2 BGSQL6� DB2COB3 1

� �

Chapter 2. Basic Operation 2-41

2.6 Viewing Component Lists

� �
--------------------------- OUTPUT COMPONENTS -------------------------------

STEP: WRITE DD=ELMOUT VOL=TSU�24 DSN=DA1BG1�.DATALIB3

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

%+13 BGSQL631 �1.�� 23APR�1 1�:32 BG2 BG2 BGSQL631 BGUCOMP2 1

STEP: LINK DD=SYSLMOD VOL=BST��3 DSN=BST.DA1BG1�.LOADLIB2

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

%+13 BGSQL631 �1.�� 23APR�1 1�:32 BG2 BG2 BGSQL631 BGUCOMP2 1

STEP: CONWRIT DD=ELMOUT2 VOL=TSU�34 DSN=DA1BG1�.UCOMPLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

%+13 BGSQL631 �1.�� 23APR�1 1�:32 BG2 BG2 BGSQL631 BGUCOMP2 1

----------------------- RELATED INPUT COMPONENTS -----------------------------

VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG ENVRMNT

%+13 BG2 BG2 BGSQL6�1 BGLOAD2 1 QA

%+13 BG2 BG2 BGSQL64 DB2COB3 1 QA

%+13 �1.�1 12JAN�1 1�:�5 BG2 BG2 BGSQL65 DB2COB 1 QA

DSN=DA1BG1�.DBRMLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

+12 BGSQL7� �1 �� 29JAN�1 11:26 BG2 BG2 BGSQL7� DB2COB2 1

DSN=DA1BG1�.SRCLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

%+13 BC1PSQL3

� �

2-42 Automated Configuration Option Guide

2.6 Viewing Component Lists

� �
----------------------- RELATED OUTPUT COMPONENTS ---------------------------

VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG ENVRMNT

%+13 BG2 BG2 BGSQL6�� BGLOAD2 1 QA

%+13 �1.�� 11FEB�1 1�:27 BG2 BG2 BGSQL63� BGUCOMP2 1 QA

%+13 BG2 BG2 BGSQL723 BGLOAD3 1 QA

DSN=DA1BG1�.DBRMLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

%+13 BGSQL6� �1 �� �5FEB�1 1�:35 BG2 BG2 BGSQL6� DB2COB3 1

+12 BGSQL7� �1 �� 29JAN�1 11:26 BG2 BG2 BGSQL7� DB2COB2 1

DSN=DA1BG1�.SRCLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

%+13 BC1PSQL1

---------------------------- RELATED OBJECTS ---------------------------------

 +12 D:\EMVS37\TEMP.DOC

%+13 D:\EMVS37\TEMP.DOC2B

 +12 D:\EMVS37\TEMP.DOC3

%+13 D:\EMVS37\TEMP.DOC4B

 +12 D:\EMVS37\TEMP.DOC5

%+13 D:\EMVS37\TEMP.DOC6B

%+13 D:\EMVS37\TEMP.DOC7B

 +12 D:\EMVS37\TEMP.DOC8

 +12 <-->

 --------------------------- RELATED COMMENTS --------------------------------

 +12 THIS IS KIND OF LIKE FREE FORM TEST

 +12 THIS IS KIND OF LIKE FREE FORM TEST2

%+13 THIS IS KIND OF LIKE FREE FORM TEST3B

%+13 THIS IS KIND OF LIKE FREE FORM TEST4B

 +12 THIS IS KIND OF LIKE FREE FORM TEST5

%+13 THIS IS KIND OF LIKE FREE FORM TEST6B

 +12 THIS IS KIND OF LIKE FREE FORM TEST7

%+13 THIS IS KIND OF LIKE FREE FORM TEST8B

%+13 THIS IS KIND OF LIKE FREE FORM TEST9B

 +12 THIS IS KIND OF LIKE FREE FORM TEST1�

 +12 THIS IS KIND OF LIKE FREE FORM TEST11

� �

Chapter 2. Basic Operation 2-43

2.6 Viewing Component Lists

2.6.6 Displaying Component Changes (CX)

To view component changes only, type CX in the OPTION field of the Display
Elements/Components Lists panel (or to the left of an element name on the Element
Selection List) and press ENTER. Endevor displays the current version of the element
and its related component changes as in the following example:

� �
��������������������������������� TOP OF DATA ���������������������������������

���

���

�� ��

�� COMPONENT CHANGES 14MAY�1 13:36 ��

�� ��

�� ENVIRONMENT: QA SYSTEM: BG2 SUBSYSTEM: BG2 ��

�� ELEMENT: BGSQL631 TYPE: BGUCOMP2 STAGE: QASTG1 ��

�� ��

���

���

---------------------- COMPONENT LEVEL INFORMATION ---------------------------

 VV.LL SYNC USER DATE TIME STMTS CCID COMMENT

 ----- ---- -------- ------- ---- ----- ------------ --------------------------

 �1.�� DA2BG1� 19MAR�1 12:39 12 DA1BG1� TESTR

 �1.�1 DA2BG1� 19MAR�1 17:45 14 DA1BG1� JUST TESTING

 �1.�2 DA2BG1� 22MAR�1 1�:45 14 DA1BG1� JUST TESTING

 �1.�3 DA2BG1� 22MAR�1 11:26 14 DA1BG1� JUST TESTING

 �1.�4 DA2BG1� 22MAR�1 15:55 14 DA1BG1� JUST TESTING

 �1.�5 DA2BG1� 23MAR�1 �9:�3 14 DA1BG1� JUST TESTING

 �1.�6 DA2BG1� 23MAR�1 �9:�4 14 DA1BG1� JUST TESTING

 �1.�7 DA2BG1� 23MAR�1 �9:�5 14 DA1BG1� JUST TESTING

 �1.�8 DA2BG1� 23MAR�1 �9:�7 14 DA1BG1� JUST TESTING

 �1.�9 DA2BG1� 22APR�1 11:11 14

 �1.1� DA2BG1� 22APR�1 11:28 14

 �1.11 DA2BG1� 22APR�1 13:�9 14

 �1.12 DA2BG1� 23APR�1 1�:18 53

 �1.13 DA2BG1� 23APR�1 1�:32 53

 -------------------------- ELEMENT INFORMATION ------------------------------

VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE GROUP STG S

 +�� �1.�� 19MAR�1 12:22 BG2 BG2 BGSQL631 BGUCOMP2 BGUCOMP2 1

� �

2-44 Automated Configuration Option Guide

2.6 Viewing Component Lists

� �
--------------------------- OUTPUT COMPONENTS -------------------------------

STEP: WRITE DD=ELMOUT VOL=TSU�24 DSN=DA1BG1�.DATALIB3

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

 +13 BGSQL631 �1.�� 23APR�1 1�:32 BG2 BG2 BGSQL631 BGUCOMP2 1

 +12-13 BGSQL631 �1.�� 23APR�1 1�:18 BG2 BG2 BGSQL631 BGUCOMP2 1

 STEP: LINK DD=SYSLMOD VOL=BST��3 DSN=BST.DA1BG1�.LOADLIB2

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

 +13 BGSQL631 �1.�� 23APR�1 1�:32 BG2 BG2 BGSQL631 BGUCOMP2 1

 +12-13 BGSQL631 �1.�� 23APR�1 1�:18 BG2 BG2 BGSQL631 BGUCOMP2 1

STEP: CONWRIT DD=ELMOUT2 VOL=TSU�34 DSN=DA1BG1�.UCOMPLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

 +13 BGSQL631 �1.�� 23APR�1 1�:32 BG2 BG2 BGSQL631 BGUCOMP2 1

 +12-13 BGSQL631 �1.�� 23APR�1 1�:18 BG2 BG2 BGSQL631 BGUCOMP2 1

----------------------- RELATED INPUT COMPONENTS -----------------------------

VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG ENVRMNT

+13 BG2 BG2 BGSQL6�1 BGLOAD2 1 QA

+13 BG2 BG2 BGSQL64 DB2COB3 1 QA

 +13 �1.�1 12JAN�1 1�:�5 BG2 BG2 BGSQL65 DB2COB 1 QA

+12-13 BG2 BG2 BGSQL6�� BGLOAD2 1 QA

 +12-13 �1.�� �1FEB�1 11:12 BG2 BG2 BGSQL63� BGUCOMP2 1 QA

+12-13 BG2 BG2 BGSQL723 BGLOAD3 1 QA

DSN=DA1BG1�.DBRMLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

 +12-13 BGSQL6� �1 �� �5FEB�1 1�:35 BG2 BG2 BGSQL6� DB2COB3 1

DSN=DA1BG1�.SRCLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

 +13 BC1PSQL3

 +12-13 BC1PSQL1

� �

Chapter 2. Basic Operation 2-45

2.6 Viewing Component Lists

� �
----------------------- RELATED OUTPUT COMPONENTS ---------------------------

VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG ENVRMNT

+13 BG2 BG2 BGSQL6�� BGLOAD2 1 QA

 +13 �1.�� 11FEB�1 1�:27 BG2 BG2 BGSQL63� BGUCOMP2 1 QA

+13 BG2 BG2 BGSQL723 BGLOAD3 1 QA

+12-13 BG2 BG2 BGSQL6�1 BGLOAD2 1 QA

+12-13 BG2 BG2 BGSQL64 DB2COB3 1 QA

 +12-13 �1.�1 12JAN�1 1�:�5 BG2 BG2 BGSQL65 DB2COB 1 QA

DSN=DA1BG1�.DBRMLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

+13 BGSQL6� �1 �� �5FEB�1 1�:35 BG2 BG2 BGSQL6� DB2COB3 1

DSN=DA1BG1�.SRCLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

 +13 BC1PSQL1

 +12-13 BC1PSQL3

---------------------------- RELATED OBJECTS ---------------------------------

 +13 D:\EMVS37\TEMP.DOC2B

 +12-13 D:\EMVS37\TEMP.DOC2

 +13 D:\EMVS37\TEMP.DOC4B

 +12-13 D:\EMVS37\TEMP.DOC4

 +13 D:\EMVS37\TEMP.DOC6B

 +13 D:\EMVS37\TEMP.DOC7B

 +12-13 D:\EMVS37\TEMP.DOC6

 +12-13 D:\EMVS37\TEMP.DOC7

---------------------------- RELATED COMMENTS --------------------------------

 +13 THIS IS KIND OF LIKE FREE FORM TEST3B

 +13 THIS IS KIND OF LIKE FREE FORM TEST4B

 +12-13 THIS IS KIND OF LIKE FREE FORM TEST3

 +12-13 THIS IS KIND OF LIKE FREE FORM TEST4

 +13 THIS IS KIND OF LIKE FREE FORM TEST6B

 +12-13 THIS IS KIND OF LIKE FREE FORM TEST6

 +13 THIS IS KIND OF LIKE FREE FORM TEST8B

 +13 THIS IS KIND OF LIKE FREE FORM TEST9B

 +12-13 THIS IS KIND OF LIKE FREE FORM TEST8

 +12-13 THIS IS KIND OF LIKE FREE FORM TEST9

� �

2-46 Automated Configuration Option Guide

2.6 Viewing Component Lists

2.6.7 Viewing Change History (HX)

To view the change history, type HX in the OPTION field of the Display
Elements/Components Lists panel (or to the left of an element name on the Element
Selection List) and press ENTER. Endevor displays the change history for the
specified element/component as in the following example:

� �
���

���

�� ��

�� COMPONENT HISTORY 14MAY�1 13:42 ��

�� ��

�� ENVIRONMENT: QA SYSTEM: BG2 SUBSYSTEM: BG2 ��

�� ELEMENT: BGSQL631 TYPE: BGUCOMP2 STAGE: QASTG1 ��

�� ��

���

���

---------------------- COMPONENT LEVEL INFORMATION ---------------------------

 VV.LL SYNC USER DATE TIME STMTS CCID COMMENT

 ----- ---- -------- ------- ----- ----- ------------ --------------------------

 �1.�� DA2BG1� 19MAR�1 12:39 12 DA1BG1� TESTR

 �1.�1 DA2BG1� 19MAR�1 17:45 14 DA1BG1� JUST TESTING

 �1.�2 DA2BG1� 22MAR�1 1�:45 14 DA1BG1� JUST TESTING

 �1.�3 DA2BG1� 22MAR�1 11:26 14 DA1BG1� JUST TESTING

 �1.�4 DA2BG1� 22MAR�1 15:55 14 DA1BG1� JUST TESTING

 �1.�5 DA2BG1� 23MAR�1 �9:�3 14 DA1BG1� JUST TESTING

 �1.�6 DA2BG1� 23MAR�1 �9:�4 14 DA1BG1� JUST TESTING

 �1.�7 DA2BG1� 23MAR�1 �9:�5 14 DA1BG1� JUST TESTING

 �1.�8 DA2BG1� 23MAR�1 �9:�7 14 DA1BG1� JUST TESTING

 �1.�9 DA2BG1� 22APR�1 11:11 14

 �1.1� DA2BG1� 22APR�1 11:28 14

 �1.11 DA2BG1� 22APR�1 13:�9 14

 �1.12 DA2BG1� 23APR�1 1�:18 53

 �1.13 DA2BG1� 23APR�1 1�:32 53

-------------------------- ELEMENT INFORMATION ------------------------------

VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE GROUP STG S

 +�� �1.�� 19MAR�1 12:22 BG2 BG2 BGSQL631 BGUCOMP2 BGUCOMP2 1

------------------------ PROCESSOR INFORMATION ------------------------------

VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE GROUP STG S

%+12 �1.�5 23APR�1 �9:27 BG2 BG2 BGUCOMP2 PROCESS 1

%+��-12 �1.�4 16MAR�1 17:1� BG2 BG2 BGUCOMP2 PROCESS 1

� �

Chapter 2. Basic Operation 2-47

2.6 Viewing Component Lists

� �
-------------------------- SYMBOL INFORMATION ------------------------------

 DEFINED SYMBOL VALUE

+�� PROCESSOR UNIT VIO

 --------------------------- INPUT COMPONENTS ------------------------------

STEP: LINK DD=OBJLIB VOL=TSU�23 DSN=DA1BG1�.OBJLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

%+�9 BGSQL6� �1.�� �5FEB�1 1�:35 BG2 BG2 BGSQL6� DB2COB3 1

STEP: LINK DD=OBJLIB VOL=TSU�63 DSN=DA1BG1�.OBJLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

%+��-�9 BGSQL6� �1.�� �5FEB�1 1�:35 BG2 BG2 BGSQL6� DB2COB3 1

--------------------------- OUTPUT COMPONENTS -------------------------------

STEP: WRITE DD=ELMOUT VOL=TSU�24 DSN=DA1BG1�.DATALIB3

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

%+13 BGSQL631 �1.�� 23APR�1 1�:32 BG2 BG2 BGSQL631 BGUCOMP2 1

%+12-13 BGSQL631 �1.�� 23APR�1 1�:18 BG2 BG2 BGSQL631 BGUCOMP2 1

%+11-12 BGSQL631 �1.�� 22APR�1 13:�9 BG2 BG2 BGSQL631 BGUCOMP2 1

%+1�-11 BGSQL631 �1.�� 22APR�1 11:28 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�9-1� BGSQL631 �1.�� 22APR�1 11:11 BG2 BG2 BGSQL631 BGUCOMP2 1

STEP: WRITE DD=ELMOUT VOL=TSU�64 DSN=DA1BG1�.DATALIB3

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

%+�8-�9 BGSQL631 �1.�� 23MAR�1 �9:�7 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�7-�8 BGSQL631 �1.�� 23MAR�1 �9:�5 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�6-�7 BGSQL631 �1.�� 23MAR�1 �9:�4 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�5-�6 BGSQL631 �1.�� 23MAR�1 �9:�3 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�4-�5 BGSQL631 �1.�� 22MAR�1 15:55 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�3-�4 BGSQL631 �1.�� 22MAR�1 11:26 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�2-�3 BGSQL631 �1.�� 22MAR�1 1�:45 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�1-�2 BGSQL631 �1.�� 19MAR�1 17:45 BG2 BG2 BGSQL631 BGUCOMP2 1

� �

2-48 Automated Configuration Option Guide

2.6 Viewing Component Lists

� �
STEP: LINK DD=SYSLMOD VOL=BST��3 DSN=BST.DA1BG1�.LOADLIB2

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

%+��-�1 BGSQL631 �1.�� 19MAR�1 12:39 BG2 BG2 BGSQL631 BGUCOMP2 1

%+13 BGSQL631 �1.�� 23APR�1 1�:32 BG2 BG2 BGSQL631 BGUCOMP2 1

%+12-13 BGSQL631 �1.�� 23APR�1 1�:18 BG2 BG2 BGSQL631 BGUCOMP2 1

%+11-12 BGSQL631 �1.�� 22APR�1 13:�9 BG2 BG2 BGSQL631 BGUCOMP2 1

%+1�-11 BGSQL631 �1.�� 22APR�1 11:28 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�9-1� BGSQL631 �1.�� 22APR�1 11:11 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�8-�9 BGSQL631 �1.�� 23MAR�1 �9:�7 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�7-�8 BGSQL631 �1.�� 23MAR�1 �9:�5 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�6-�7 BGSQL631 �1.�� 23MAR�1 �9:�4 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�5-�6 BGSQL631 �1.�� 23MAR�1 �9:�3 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�4-�5 BGSQL631 �1.�� 22MAR�1 15:55 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�3-�4 BGSQL631 �1.�� 22MAR�1 11:26 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�2-�3 BGSQL631 �1.�� 22MAR�1 1�:45 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�1-�2 BGSQL631 �1.�� 19MAR�1 17:45 BG2 BG2 BGSQL631 BGUCOMP2 1

STEP: CONWRIT DD=ELMOUT2 VOL=TSU�34 DSN=DA1BG1�.UCOMPLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

%+13 BGSQL631 �1.�� 23APR�1 1�:32 BG2 BG2 BGSQL631 BGUCOMP2 1

%+12-13 BGSQL631 �1.�� 23APR�1 1�:18 BG2 BG2 BGSQL631 BGUCOMP2 1

----------------------- RELATED INPUT COMPONENTS -----------------------------

VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG ENVRMNT

%+13 BG2 BG2 BGSQL6�1 BGLOAD2 1 QA

%+13 BG2 BG2 BGSQL64 DB2COB3 1 QA

%+13 �1.�1 12JAN�1 1�:�5 BG2 BG2 BGSQL65 DB2COB 1 QA

%+12-13 BG2 BG2 BGSQL6�� BGLOAD2 1 QA

%+12-13 �1.�� �1FEB�1 11:12 BG2 BG2 BGSQL63� BGUCOMP2 1 QA

%+12-13 BG2 BG2 BGSQL723 BGLOAD3 1 QA

DSN=DA1BG1�.DBRMLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

%+12-13 BGSQL6� �1 �� �5FEB�1 1�:35 BG2 BG2 BGSQL6� DB2COB3 1

%+12 BGSQL7� �1 �� 29JAN�1 11:26 BG2 BG2 BGSQL7� DB2COB2 1

DSN=DA1BG1�.SRCLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

%+13 BC1PSQL3

%+12-13 BC1PSQL1

� �

Chapter 2. Basic Operation 2-49

2.6 Viewing Component Lists

� �
----------------------- RELATED OUTPUT COMPONENTS ---------------------------

VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG ENVRMNT

%+13 BG2 BG2 BGSQL6�� BGLOAD2 1 QA

%+13 �1.�� 11FEB�1 1�:27 BG2 BG2 BGSQL63� BGUCOMP2 1 QA

%+13 BG2 BG2 BGSQL723 BGLOAD3 1 QA

%+12-13 BG2 BG2 BGSQL6�1 BGLOAD2 1 QA

%+12-13 BG2 BG2 BGSQL64 DB2COB3 1 QA

%+12-13 �1.�1 12JAN�1 1�:�5 BG2 BG2 BGSQL65 DB2COB 1 QA

DSN=DA1BG1�.DBRMLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

%+13 BGSQL6� �1 �� �5FEB�1 1�:35 BG2 BG2 BGSQL6� DB2COB3 1

%+12 BGSQL7� �1 �� 29JAN�1 11:26 BG2 BG2 BGSQL7� DB2COB2 1

DSN=DA1BG1�.SRCLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

%+13 BC1PSQL1

%+12-13 BC1PSQL3

---------------------------- RELATED OBJECTS ---------------------------------

%+12 D:\EMVS37\TEMP.DOC

%+13 D:\EMVS37\TEMP.DOC2B

%+12-13 D:\EMVS37\TEMP.DOC2

%+12 D:\EMVS37\TEMP.DOC3

%+13 D:\EMVS37\TEMP.DOC4B

%+12-13 D:\EMVS37\TEMP.DOC4

%+12 D:\EMVS37\TEMP.DOC5

%+13 D:\EMVS37\TEMP.DOC6B

%+13 D:\EMVS37\TEMP.DOC7B

%+12-13 D:\EMVS37\TEMP.DOC6

%+12-13 D:\EMVS37\TEMP.DOC7

%+12 D:\EMVS37\TEMP.DOC8

%+12 <-->

� �

2-50 Automated Configuration Option Guide

2.6 Viewing Component Lists

� �
---------------------------- RELATED COMMENTS --------------------------------

%+12 THIS IS KIND OF LIKE FREE FORM TEST

%+12 THIS IS KIND OF LIKE FREE FORM TEST2

%+13 THIS IS KIND OF LIKE FREE FORM TEST3B

%+13 THIS IS KIND OF LIKE FREE FORM TEST4B

%+12-13 THIS IS KIND OF LIKE FREE FORM TEST3

%+12-13 THIS IS KIND OF LIKE FREE FORM TEST4

%+12 THIS IS KIND OF LIKE FREE FORM TEST5

%+13 THIS IS KIND OF LIKE FREE FORM TEST6B

%+12-13 THIS IS KIND OF LIKE FREE FORM TEST6

%+12 THIS IS KIND OF LIKE FREE FORM TEST7

%+13 THIS IS KIND OF LIKE FREE FORM TEST8B

%+13 THIS IS KIND OF LIKE FREE FORM TEST9B

%+12-13 THIS IS KIND OF LIKE FREE FORM TEST8

%+12-13 THIS IS KIND OF LIKE FREE FORM TEST9

%+12 THIS IS KIND OF LIKE FREE FORM TEST1�

%+12 THIS IS KIND OF LIKE FREE FORM TEST11

STEP: CONWRIT DD=ELMOUT2 VOL=TSU�34 DSN=DA1BG1�.UCOMPLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

%+11-12 BGDUMY6� �1.�� 22APR�1 13:�9 BG2 BG2 BGSQL631 BGUCOMP2 1

%+1�-11 BGDUMY6� �1.�� 22APR�1 11:28 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�9-1� BGDUMY6� �1.�� 22APR�1 11:11 BG2 BG2 BGSQL631 BGUCOMP2 1

STEP: CONWRIT DD=ELMOUT2 VOL=TSU�36 DSN=DA1BG1�.UCOMPLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG

%+�8-�9 CONWRIT2 �1.�� 23MAR�1 �9:�7 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�7-�8 CONWRIT2 �1.�� 23MAR�1 �9:�5 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�6-�7 CONWRIT2 �1.�� 23MAR�1 �9:�4 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�5-�6 CONWRIT2 �1.�� 23MAR�1 �9:�3 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�4-�5 CONWRIT2 �1.�� 22MAR�1 15:55 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�3-�4 CONWRITE �1.�� 22MAR�1 11:26 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�2-�3 BGDUMMY4 �1.�� 22MAR�1 1�:45 BG2 BG2 BGSQL631 BGUCOMP2 1

%+�1-�2 BGDUMMY4 �1.�� 19MAR�1 17:45 BG2 BG2 BGSQL631 BGUCOMP2 1

%+��-�1 BGDUMMY4 �1.�� 19MAR�1 12:39 BG2 BG2 BGSQL631 BGUCOMP2 1

� �

Chapter 2. Basic Operation 2-51

2.7 Component List Fields

2.7 Component List Fields

 2.7.1 Seven Sections

Component lists contain seven sections:

 ■ Banner

■ Component Level Information

 ■ Element Information

 ■ Processor Information

 ■ Symbol Information

 ■ Input Components

 ■ Output Components

A brief description of each of the fields within those sections is provided below.

 2.7.2 Banner

The Banner at the top of the component list describes the element to which the
component list belongs. The Banner contains the following fields:

Field Description

no title Blank. The following message appears if the
component list was copied from Stage 1 to Stage 2:
COMPONENT AND LIST COPIED FROM
STAGE 1.

Component <Display> <Display> is a variable that indicates the option
specified (Component Browse, Component
Changes, or Component History).

Date The date the component list was created.

Time The time the component list was created.

Environment The element's originating environment.

System Name of the system under which the element is
defined.

Subsystem Name of the subsystem under which the element is
defined.

Element Name of the element for which the component list
is being displayed.

Type The element type for the element.

2-52 Automated Configuration Option Guide

2.7 Component List Fields

Field Description

Stage The stage name for the element.

2.7.3 Component Level Information

This section describes the various levels of the component list. A component list is
created every time a generate processor is executed (by the Add, Update, Generate,
Transfer or Restore action), or a move processor (by the Move action). The new
component list is then compared to the current level component list, if one exists. Any
change in the components causes a new component level to be created for the
component list. A component list will not be stored if the processor that created the
component list failed.

The Component Level Information section contains the following fields:

Field Description

VV.LL Version/Level of the component.

SYNC Indicates whether this level is a synchronize level;
that is, built by Endevor as a result of a
TRANSFER action. This field does not appear on
a component list.

User The user who ran a processor which created the
component list.

Date The date the component list was created.

Time The time the component list was created.

Stmts Total number of statements in the component list.

CCID The CCID specified with the action which created
this level of the component list.

Comment The comment specified with the action which
created this level of the component list.

Chapter 2. Basic Operation 2-53

2.7 Component List Fields

 2.7.4 Element Information

This section of the component list provides element information, and contains the
following fields:

Field Description

Level (no title)
columns 1-7

Display-only. Indicates the level at which this
particular line was inserted into or inserted
into/deleted from the component list, as follows:

■ +LL (in Col. 2-4) indicates that a line was
inserted at a particular level; for example, +02
signifies that the line was inserted at level 02.

■ +LL-LL (in Col. 2-7) indicates that a line was
inserted at one level, then deleted at another
level. For example, +02-03 signifies that a
particular line was inserted at level 02, then
deleted at level 03.

■ % (in Col. 1) depends upon the type of
display you request. If you request
Component Browse, a percent sign (%)
indicates that the line was inserted (+LL) or
deleted (-LL) as of the level displayed.

If you request Component History, "%" appears
next to every change that has occurred since the
base level. For example, if the base level is 00 and
the current level is 02, any changes occurring in
levels 01 and 02 will be flagged with the percent
sign.

VV.LL Version/Level of the element when the component
list was created.

Date Current level date of the element when the
component list was created.

Time Current level time of the element when the
component list was created.

System Name of the system under which the element is
defined.

Subsystem Name of the subsystem under which the element is
defined.

Element Name of the element for the component list.

Type The element type for the element.

Group The name of the processor group for the element.

2-54 Automated Configuration Option Guide

2.7 Component List Fields

Field Description

Stage The stage for the element.

Site Location where Endevor is installed.

Environment Current environment.

Processor The name of the processor used to process the
element.

 2.7.5 Processor Information

This section describes the Endevor processor that created the component list. It
contains the following fields from the processor's footprint:

Field Description

Level (no title) columns
1-7

Display-only. Indicates the level at which this
particular line was inserted into or inserted
into/deleted from the component list, as follows;

■ +LL (in Col. 2-4) indicates that a line was
inserted at a particular level; for example, +02
signifies that the line was inserted at level 02.

■ +LL-LL (in Col. 2-7) indicates that a line was
inserted at one level, then deleted at another
level. For example, +02-03 signifies that a
particular line was inserted at level 02, then
deleted at level 03.

■ % (in Col. 1) depends upon the type of
display you request. If you request
Component Browse, a percent sign (%)
indicates that the line was inserted (+LL) or
deleted (-LL) as of the level displayed.

If you request Component History, "%" appears
next to every change that has occurred since the
base level. For example, if the base level is 00 and
the current level is 02, any changes occurring in
levels 01 and 02 will be flagged with the percent
sign.

VV.LL Version/Level of the processor.

Date The date the processor was generated.

Time The time the processor was generated.

System Name of the system under which the processor is
defined.

Chapter 2. Basic Operation 2-55

2.7 Component List Fields

Field Description

Subsystem Name of the subsystem under which the processor
is defined.

Element Name of the processor.

Type The processor type.

Group This field is not applicable to this particular section
of the component list.

Stage The stage for the processor.

Site The location where Endevor is installed.

Environment Current environment.

Processor This field is not applicable to this particular section
of the component list.

2-56 Automated Configuration Option Guide

2.7 Component List Fields

 2.7.6 Symbol Information

This section lists the user-defined symbols that appear in the PROC statements within
the indicated processor.

Field Description

Level (no title) columns
1-7

Display-only. Indicates the level at which this
particular line was inserted into or inserted
into/deleted from the component list, as follows:

■ +LL (in Col. 2-4) indicates that a line was
inserted at a particular level; for example, +02
signifies that the line was inserted at level 02.

■ +LL-LL (in Col. 2-7) indicates that a line was
inserted at one level, then deleted at another
level. For example, +02-03 signifies that a
particular line was inserted at level 02, then
deleted at level 03.

■ % (in Col. 1) depends upon the type of
display you request. If you request
Component Browse, a percent sign (%)
indicates that the line was inserted (+LL) or
deleted (-LL) as of the level displayed.

If you request Component History, "%" appears
next to every change that has occurred since the
base level. For example, if the base level is 00 and
the current level is 02, any changes occurring in
levels 01 and 02 will be flagged with the percent
sign.

Defined Indicates where the symbolic has been defined:

■ PROCESSOR—The value of the symbolic is
defined within the PROC statement in the
processor.

■ PROC GRP—The original value of the
symbolic has been overridden using the
Processor Group Symbolics panel. (For
details, see the Extended Processors Guide.)

Symbol The symbolic as it appears in the PROC statement.

Value The value that is substituted for the symbolic when
the processor is run.

Chapter 2. Basic Operation 2-57

2.7 Component List Fields

 2.7.7 Input Components

This section lists the input components that were used during processor execution, and
it contains the following fields:

The following fields are from the footprint (if applicable):

Field Description

STEP: STEP name of the processor.

DD= DDname from the processor.

VOL= Volume on which the data set resides.

DSN= Library from which the input component was read.

Level (no title) columns
1-7

Display-only. Indicates the level at which this
particular line was inserted into or inserted
into/deleted from the component list, as follows:

■ +LL (in Col. 2-4) indicates that a line was
inserted at a particular level; for example, +02
signifies that the line was inserted at level 02.

■ +LL-LL (in Col. 2-7) indicates that a line was
inserted at one level, then deleted at another
level. For example, +02-03 signifies that a
particular line was inserted at level 02, then
deleted at level 03.

■ % (in Col. 1) depends upon the type of
display you request. If you request
Component Browse, a percent sign (%)
indicates that the line was inserted (+LL) or
deleted (-LL) as of the of the level displayed.

If you request Component History, "%" appears
next to every change that has occurred since the
base level. For example, if the base level is 00 and
the current level is 02, any changes occurring in
levels 01 and 02 will be flagged with the percent
sign.

Member Name of the input component read in by the
Endevor processor during execution.

Field Description

VV.LL Version/Level of the input component.

Date The date the input component was generated.

2-58 Automated Configuration Option Guide

2.7 Component List Fields

Field Description

Time The time the input component was generated.

System Name of the system under which the input
component is defined.

Subsystem Name of the subsystem under which the input
component is defined.

Element Name of the input component.

Type Name of the input component type.

Stage The stage for the input component.

Site The location where Endevor is installed.

Environment The current environment.

LD Indicates whether a footprint was created by the
Load Utility.

 2.7.8 Output Components

This section lists the members that were created during processor execution; it contains
the following fields:

Fields Description

STEP: STEP name of the processor.

DD= DDname from the processor.

VOL= Volume on which the data set resides.

DSN= Library that contains the output component.

Chapter 2. Basic Operation 2-59

2.7 Component List Fields

Fields Description

Level (no title) columns
1-7

Display-only. Indicates the level at which this
particular line was inserted into or inserted
into/deleted from the component list, as follows:

■ +LL (in Col. 2-4) indicates that a line was
inserted at a particular level; for example, +02
signifies that the line was inserted at level 02.

■ +LL-LL (in Col. 2-7) indicates that a line was
inserted at one level, then deleted at another
level. For example, +02-03 signifies that a
particular line was inserted at level 02, then
deleted at level 03.

■ % (in Col. 1) depends upon the type of
display you request. If you request
Component Browse, a percent sign (%)
indicates that the line was inserted (+LL) or
deleted (-LL) as of the level displayed.

If you request Component History, "%" appears
next to every change that has occurred since the
base level. For example, if the base level is 00 and
the current level is 02, any changes occurring in
levels 01 and 02 will be flagged with the percent
sign.

Member Name of the output component created during
processor execution.

2-60 Automated Configuration Option Guide

2.7 Component List Fields

The following fields are from the footprint (if applicable):

Field Description

VV.LL Version/Level of the output component.

Date The date the output component was generated.

Time The time the output component was generated.

System Name of the system under which the output
component is defined.

Subsystem Name of the subsystem under which the output
component is defined.

Element Name of the output component.

Type Name of the output component type.

Stage The stage for the output component.

Site The location where Endevor is installed.

Environment The current environment.

LD Indicates whether a footprint was specified by the
Load Utility.

2.7.9 Related Input Components

This section lists the elements created during processor execution and contains the
following fields:

Field Description

VV.LL Version/Level of the related input component.

Date The date the related input component was
generated.

Time The time the related input component was
generated.

System Name of the system under which the related input
component is defined.

Subsystem Name of the subsystem under which the related
input component is defined.

Element Name of the related input component.

Type Name of the related input component type.

Stage The stage for the related input component.

Environment The current environment.

Chapter 2. Basic Operation 2-61

2.7 Component List Fields

The following fields and descriptions are for related members. You can generate
footprint information for each of the following fields:

Field Description

DSN= Library from which the related input component
was read.

Member The name of the related input component read in
by the Endevor processor during execution.

VV.LL Version/Level of the related input component.

Date The date the related input component was
generated.

Time The time the related input component was
generated.

System Name of the system under which the related input
component is defined.

Subsystem Name of the subsystem under which the related
input component is defined.

Element Name of the related input component.

Type Name of the related input component type.

Stage The stage for the related input component.

Environment The current environment.

2.7.10 Related Output Components

This section lists the elements created during processor execution and contains the
following fields:

Field Description

VV.LL Version/Level of the related output component.

Date The date the related output component was
generated.

Time The time the related output component was
generated.

System Name of the system under which the related output
component is defined.

Subsystem Name of the subsystem under which the related
output component is defined.

Element Name of the related output component.

2-62 Automated Configuration Option Guide

2.7 Component List Fields

The following fields and descriptions are for related members. You can generate
footprint information for each of the following fields:

Field Description

Type Name of the related output component type.

Stage The stage for the related output component.

Environment The current environment.

Field Description

DSN= Library from which the related output component
was read.

Member The name of the related output component read in
by the Endevor processor during execution.

VV.LL Version/Level of the related output component.

Date The date the related output component was
generated.

Time The time the related output component was
generated.

System Name of the system under which the related output
component is defined.

Subsystem Name of the subsystem under which the related
output component is defined.

Element Name of the related output component.

Type Name of the related output component type.

Stage The stage for the related output component.

Environment The current environment.

 2.7.11 Related Objects

Related objects are associated with the following field:

Field Description

Path ID 70-character object path identifier.

Chapter 2. Basic Operation 2-63

2.7 Component List Fields

 2.7.12 Related Comments

Related comments are associated with the following field:

Field Description

Comment 70-character freeform description.

2.7.13 Input/Output Component Footprints

When footprints appear within an input or output component on a component list, it
signifies that the source that created that component was controlled (and thus
footprinted) by Endevor.

2.7.13.1 Information Included in a Endevor Footprint

Endevor footprints contain the following information: site ID, environment, system,
subsystem, element, type, stage, version/level, and generate date/time.

2.7.13.2 When Footprints Are Included in the Component List

When elements are controlled by Endevor, their footprints are carried along into the
component list during program execution. If, for example, you reference a copy
record in a PDS that is under the control of Endevor, it will contain a footprint that
will show up on the component list.

2.7.13.3 When Footprints Are Not Included in the Component List

Load Modules controlled by Endevor can contain multiple footprints. Consequently,
when an element is a load module (with multiple footprints), Endevor ACM does not
capture all of the footprints for display on the component list.

2-64 Automated Configuration Option Guide

2.8 Element Action Processing

2.8 Element Action Processing

Endevor element action processing and Quick-Edit invoke the ACMQ query facility to
report on existing dependencies on the element modified by the action or Quick-Edit.
After Endevor element action processing is completed, Endevor invokes ACMQ to
determine if the element is referenced by other elements. It then issues a message that
appears in the execution message log, indicating the result of the query.

Similarly, Quick-Edit invokes ACMQ to determine element dependencies when it
displays the initial text edit panel. It communicates the results of the query via ISPF
“note” lines. (The additional messages appear after the “fetched from location”
information note lines, if the element is being fetched to the edit inventory location.)

Chapter 2. Basic Operation 2-65

2-66 Automated Configuration Option Guide

Chapter 3. ACM Query Facility

Chapter 3. ACM Query Facility 3-1

3.1 Overview

 3.1 Overview

This chapter describes how to use the ACM Query Facility.

3-2 Automated Configuration Option Guide

3.2 Introduction to the ACM Query Facility

3.2 Introduction to the ACM Query Facility

In addition to the functionality discussed in Chapter 2, you can also view "where-used"
information against the ACM component data by utilizing the ACM Query Facility.
To activate this facility, please refer to Chapter 2, "Basic Operation."

The ACMQ command is used to perform online queries or SCL generation against the
root and cross-reference data sets.

Chapter 3. ACM Query Facility 3-3

3.3 Using ACMQ

 3.3 Using ACMQ

To use the ACMQ facility, perform the following steps:

1. Execute a CLIST that allocates the library that contains the C1DEFLTS table and
the Endevor product libraries.

2. Do one of the following:

■ Enter AC on the command line of any Endevor panel.

■ Enter TSO ACMQ on any ISPF panel.

■ Execute ACMQ from ISPF, Option 6.

■ Select Option 2 from the NDVRUSER panel.

3.3.1 Refreshing ACMQ Data

To enhance query performance, when you enter the ACM Query Facility, the
component data available at the time of invocation is used for all the queries
performed inside of the facility. Therefore, the data that you search in the ACMQ
facility may not contain Endevor data that has been updated since you entered ACMQ.

To refresh the component data that the facility uses in its searches, simply exit the
ACMQ facility and then re-enter it.

 3.3.2 Indirect References

In addition to reporting on the elements that have a direct reference to the object of
your search, ACMQ's "where-used" report also returns elements that likely use the
object of your query—that is, footprinted items whose name and type are exactly the
same as a previously found ACMQ item, but whose Endevor location (environment,
stage, system, and subsystem) is different.

For example, suppose you perform a "where-used" query for an element named
COPYA. Assume further that COPYA is an input component of an element named
PGMB, type COBOL, which in turn is an input component of an element named
PGMC, type LNK. All three elements exist in the same environment (ENV1) and
stage (STG 1). The output for such a query would looks as follows:

LVL ELEMENT TYPE ENVIRON SYTEM SUBSYS STG

 1 COPYA CPY ENV1 1

2 PGMB COBOL ENV1 1

 3 PGMC LNK ENV1 1

3-4 Automated Configuration Option Guide

3.3 Using ACMQ

Now suppose that all three of the elements listed in the report above are moved to the
next stage (STG 2) using a MOVE processor, meaning that the component list data has
been copied, but not rebuilt by a GENERATE processor. In this case, a "where-used"
query on COPYA would result in the following output:

LVL ELEMENT TYPE ENVIRON SYTEM SUBSYS STG

 1 COPYA CPY ENV1 1

2 PGMB COBOL ENV1 2

 2� PGMB COBOL ENV1 1

 3� PGMC LNK ENV1 2

The first of the two elements that are marked with an asterisk ("*") has the same name
and type as an element that is known to contain direct references to COPYA.
However, since this element has been moved to another Endevor location, without
being rebuilt, ACMQ cannot be sure that it still contains references to COPYA.
Therefore, ACMQ treats this element as having only an indirect reference to the object
of the query. In the report output, these "indirect references" are marked with an
asterisk and are displayed after the elements that definitely contain direct references to
your search.

Note also that elements that contain a reference to an indirect reference are themselves
considered indirect references, unless they also contain a direct reference to your
search, or to an element that directly references your search.

Read the following notes about the report shown above to better understand indirect
references:

■ COPYA has no component list. Thus, when it is moved to the next stage, no
component list changes take place, nor do any ACMQ changes take place.
Accordingly, ACMQ continues to reference it in ENV1 / STG 1.

■ When PGMB COBOL is moved to the next stage, its component list is copied and
becomes the component list of PGMB COBOL in STG 2. However, since no
changes have been made to the list (other than copying it), the reference in PGMB
COBOL in STG 2 to COPYA still remains. ACMQ then determines that PGMB
COBOL in ENV1 / STG 1 is an indirect reference because it has the same
element name and type as PGMB COBOL in ENV1 / STG 2.

■ PGMC LNK in ENV1 / STG 1 had a reference to PGMB COBOL in ENV1 /
STG 1. When it was moved, it underwent the same changes as PGMB COBOL;
thus, PGMC LNK in ENV1 / STG 2 continues to reference PGMB COBOL in
ENV1 / STG 1. Since PGMC LNK refers to an indirect reference (PGMB
COBOL in ENV1 / STG 1), ACMQ considers it to be an indirect reference.

Chapter 3. ACM Query Facility 3-5

3.4 ACMQ Panels

 3.4 ACMQ Panels

ACMQ is composed of three full-size panels:

■ ACM Query—Accommodates all online query functions.

■ ACMQ Create GENERATE SCL—Enables you to specify GENERATE-related
options.

■ Endevor ACM Submit JOBCARD Statements—Accepts batch-related user
information (JOBCARD).

3.4.1 ACM Query Panel

The ACM Query panel, shown below, is the primary panel. It supports all online
query functions.

� �
 --------------------------------- ACM QUERY ---------------------------------

 OPTION ===> ___

 BLANK - Perform Element query C - Perform Comment query

M - Perform Member query O - Perform Object query

 ELEMENT/MEMBER ===>

 ELEMENT Query Information: Query Options:

ENVIRONMENT ===> � Where-used/Components used ===> WHE (WHE/COM)

 SYSTEM ===> � Foreground/Batch Mode =========> F (F/B)

 SUBSYSTEM ===> � Create GENERATE SCL =========> N (Y/N)

 TYPE ===> �

 STAGE NBR ===> �

 MEMBER Query Information:

 DSNAME ===> �

 COMMENT/OBJECT Query Information:

� �

3-6 Automated Configuration Option Guide

3.4 ACMQ Panels

The following table describes the ACM Query fields:

Field Description

Option Determines the type of query to be performed based on the
following values:

■ BLANK: Perform an ELEMENT query using the
information specified in the ELEMENT/MEMBER and
ELEMENT Query Information fields.

■ M: Perform a MEMBER query using the information
specified in the ELEMENT/MEMBER and MEMBER
Query Information fields.

■ C: Perform a COMMENT query using the information
specified in the Comment/Object Query Information
field.

■ O: Perform an OBJECT query using the information
specified in the Comment/Object Query Information
field.

Element/Member The name of the element or member object of the query.

Element Query Information Fields used to further qualify the element query object:

■ ENVIRONMENT: Specify the 1-8 character name of
the environment in which you want to perform your
query.

■ SYSTEM: Specify the 1-8 character name of the
system in which you want to perform your query.

■ SUBSYSTEM: Specify the 1-8 character name of the
subsystem in which you want to perform your query.

■ TYPE: Specify the type of the element(s) for which
you are searching.

■ STAGE NBR: Specify the number of the stage in
which you want to perform your query.

MEMBER Query Information
(DSNAME)

The DSNAME used to further qualify the member query
object.

Comment/Object Query
Information

The Comment/Object text string to be used as the comment
or object of the query.

Chapter 3. ACM Query Facility 3-7

3.4 ACMQ Panels

Field Description

Query Options Determines the type of query to be performed based on the
following values:

■ Where Used/Components Used: Directs ACMQ to
provide where-used or components-used information.
Specify “WHE” for where-used information or “COM”
for components-used information.

■ Foreground/Batch Mode: Directs ACMQ either to
submit a JOB for batch processing or to perform the
query processing in foreground mode. (If batch mode
is specified, a secondary panel is displayed to allow
entry of a JOBCARD.)

■ Create Generate SCL: Directs ACMQ to create
standard Endevor GENERATE SCL syntax. A
secondary panel is displayed to allow entry of
GENERATE action-related options.

3.4.2 ACMQ Create GENERATE SCL Panel

The ACMQ Create GENERATE SCL panel enables you to specify
GENERATE-related options.

� �
 --------------------------- ACM Create GENERATE SCL ---------------------------

 Action Options:

 CCID.............. R4.�

Comment........... CHANGED ACM DDNAMES

 To GENERATE W/COPYBACK:

Environment . . . I4� (Req'd for Copyback)

Stage Number . . . 2 (Req'd for Copyback, Otherwise leave blank)

System NDVRB4� Subsystem . . . ________ Type . . . ________

 REQUEST DATA SET:

PROJECT ===> USER��1 APPEND ===> N (Y/N - F/G only)

 GROUP ===> PGM

 TYPE ===> SCL

 MEMBER ===> ________

 OTHER PARTITIONED OR SEQUENTIAL DATA SET:

DSNAME ===> __

� �

3-8 Automated Configuration Option Guide

3.4 ACMQ Panels

The following table describes the ACMQ Create GENERATE SCL fields:

Field Description

Action Options The CCID field allows you to specify any 12-character CCID.
This CCID is not validated until the built SCL is actually
executed. The Comment field is available for you to define a
comment of up to 40 characters. No validation is done on the
Comment field.

To GENERATE
W/COPYBACK

Use these fields to specify the target Endevor location for the
GENERATE action. Environment and Stage are required
entries. All other location fields are optional.

REQUEST DATA SET Use these fields to define the data set to which you want to
write the action requests. The data set must be a partitioned
data set or a sequential file, and must be allocated prior to
referencing it on this panel.

OTHER PARTITIONED OR
SEQUENTIAL DATA SET

As an alternative to the REQUEST DATA SET fields, you
can use the OTHER PARTITIONED OR SEQUENTIAL
DATA SET field.

Chapter 3. ACM Query Facility 3-9

3.4 ACMQ Panels

The options displayed in the above sample screen result in the following GENERATE
actions:

 File Edit Edit_Settings Menu Utilities Compilers Test Help

EDIT USER��1.PGM.SCL(ACMQGEN) - �1.�� Columns ����1 ���72

Command ===> Scroll ===> HALF

������ ����������������������������� Top of Data ������������������������������

==MSG> �---�

==MSG> � SET BUILD ACTION GENERATE �

==MSG> � CCID 'LONG NAMES' �

==MSG> � COMMENT 'CANNOT CHG T' �

==MSG> � FROM ENVIRONMENT P4� �

==MSG> � STAGE NUMBER 2 �

==MSG> � COPYBACK SEARCH �

==MSG> � �

==MSG> � LIST USING COMPONENTS FOR �

==MSG> � ELEMENT: CIO1DSCT ENVIRONMENT : P4� �

==MSG> � SYSTEM : NDVRB4� SUBSYSTEM : � �

==MSG> � TYPE : � STAGE NUMBER: 2 �

==MSG> �---�

�����1 SET OPTIONS CCID 'LONG NAMES'

�����2 COMMENT 'CANNOT CHG TYPE ACROSS MAP'

�����3 COPYBACK SEARCH.

�����4 SET FROM ENVIRONMENT 'P4�'

�����5 STAGE NUMBER '2'.

�����6 GENERATE ELEMENT 'CIO1DSCT'

�����7 FROM SYSTEM 'NDVRB4�'

�����8 SUBSYSTEM 'BASE'

�����9 TYPE 'ASMMAC'.

����1� GENERATE ELEMENT 'ACMQAPI1'

����11 FROM SYSTEM 'NDVRB4�'

����12 SUBSYSTEM 'BASE'

����13 TYPE 'ASMPGM'.

����14 GENERATE ELEMENT 'ACMQAPI2'

����15 FROM SYSTEM 'NDVRB4�'

����16 SUBSYSTEM 'BASE'

����17 TYPE 'ASMPGM'.

3-10 Automated Configuration Option Guide

3.4 ACMQ Panels

3.4.3 Endevor ACM Submit JOBCARD Statements Panel

The Endevor ACM Submit JOBCARD Statements panel accepts batch-related user
information (JOBCARD).

� �
 ------------------------ ACM Submit JOBCARD Statements -----------------------

 JOB STATEMENT INFORMATION:

===> //USER��1A JOB (413�����),PGM,MSGCLASS=X,CLASS=A,

 ===> // NOTIFY=USER��1

 ===> //�

 ===> //�

 Press ENTER to Continue

 Press END KEY to Cancel

� �

Chapter 3. ACM Query Facility 3-11

3-12 Automated Configuration Option Guide

Chapter 4. Analyzing and Managing Software
Configuration Information

Chapter 4. Analyzing and Managing Software Configuration Information 4-1

4.1 Overview

 4.1 Overview

This chapter briefly describes Endevor's Software Control Language (SCL), and
explains how to use it along with the data Endevor ACM collects to perform change
impact analysis.

4-2 Automated Configuration Option Guide

4.2 SCL

 4.2 SCL

 4.2.1 Overview

Endevor's Software Control Language (SCL) is a freeform language, with English-like
statements, that allows you to manipulate elements and operate against multiple
environments within Endevor. You can either code SCL manually or generate it
through selected batch panels.

This section of the manual describes the various SCL statements that can be used in
conjunction with Endevor ACM. For details and complete coding information, see the
SCL Reference Guide.

4.2.2 The LIST Action

The LIST action scans elements or members in the Master Control File or a library,
and generates a list of elements/members that meet your specific selection criteria.

The Endevor LIST action will invoke ACMQ to satisfy simple, component name,
inventory location, “WHERE [INPUT | OUTPUT]” components criteria. Additional
criteria such as CCID or historical dependencies (“ALL” parameter) require Endevor to
search its base / delta libraries to perform the search. Note that Endevor will default
to using ACMQ whenever possible to perform component-related list processing.

Within the LIST action are several clauses that pertain specifically to Endevor ACM.
You can use these clauses to limit selection criteria as it applies to component lists. A
brief explanation of each clause is provided below.

 4.2.2.1 WHERE Clauses

WHERE clauses instruct Endevor to generate a list of elements or members where
specific criteria is met. Within the WHERE clause of the LIST action are two sections
that pertain specifically to Endevor ACM:

■ WHERE component spec — Allows you to indicate that only those component
lists containing input, output, and/or processor components matching a designated
component name can be selected for the LIST action. Conversely, you can
indicate that you want to see only those component lists that do not contain the
designated component.

■ You can also indicate that a specific range of components be considered, using the
THROUGH component-name clause in conjunction with the WHERE
component spec clause.

■ If the component is footprinted, you can specify the following additional selection
criteria:

Chapter 4. Analyzing and Managing Software Configuration Information 4-3

4.2 SCL

– Version and/or level of the component. When you specify a version number,
only those elements with components matching that number will be selected
for the LIST action.

– Similarly, if you specify a level number here, only those elements with
components matching that level will be selected.

– Component location information (environment, system, subsystem, type, and
stage, or file or dsname).

■ WHERE ACM component spec — Allows you to set compound criteria, when
component lists must contain both one component and another or either one
component or another. You can also specify that a component list that does not
contain both one component and another or either one component or another be
selected.

■ You can have any number of compound criteria in a single clause.

 4.2.2.2 Build Clauses

BUILD clauses indicate specific information to be applied to each action statement.
Within the BUILD clause are two sections that apply to Endevor ACM:

■ BUILD LEVEL — Indicates whether you want the version and level of the
specified element to appear on the action cards generated by the LIST request.
Three options are available when coding this clause:

– CURRENT — If the WHERE component spec clause has not been coded
for the action, or no component list exists, Endevor defaults to the current
level of the element.

– NONE — Indicates that the current version and level are not to be listed for
the element.

– ACTUAL — Indicates that the level of the component as recorded in the
component list, rather than the current level of the element as recorded in the
Master Control File, should be used when building the action statement.

■ BUILD WITH COMPONENTS — Indicates that action cards should be
generated for every input component that is associated with the specified element.

4.2.3 The Print Action

The PRINT action prints selected information about an element(s) or library
member(s), depending on the criteria entered.

Note the COMPONENTS option. When you select this option, Endevor prints all
component information (element, processor, input, and output data) relating to the
element specified. You can code this option alone or in conjunction with the
following PRINT options: BROWSE, CHANGE, HISTORY, SUMMARY, or
MASTER.

Endevor prints as much information as is available for the component list. For
example, if you request the COMPONENT CHANGES option but there are no

4-4 Automated Configuration Option Guide

4.2 SCL

changes to the output components section, that section would not appear on the
associated listing.

4.2.4 The Set Build Statement

The SET BUILD statement is used when you do not code BUILD information in the
LIST action request. As with the BUILD statement in the LIST action:

■ SET BUILD LEVEL CURRENT defaults to the current level of the element if the
WHERE component-spec clause has not been coded for the action or if no
component list exists.

■ SET BUILD NONE indicates that the current version and level are not to be listed
for the element.

■ SET BUILD LEVEL ACTUAL indicates that the actual level of the component
should be used when building the request.

■ SET BUILD WITH COMPONENTS indicates that action cards should be
generated for every input component associated with the designated element.

4.2.5 The Set Options Statement

The SET OPTIONS statement allows you to indicate that one or a series of options
should be applied to all subsequent actions in a LIST request (until the next SET
OPTIONS or a CLEAR OPTIONS statement is encountered, or processing ends).
Note that those options that do not apply to the action are ignored. In addition, if you
indicate a particular option in the action statement and have also coded that option in
the SET OPTIONS statement, the entry in the action statement overrides the SET
OPTIONS selection. The following options apply specifically to Endevor ACM:

■ ONLY COMPONENTS (used in conjunction with the DELETE action) allows
you to delete the component lists for an element, but not the element itself.

■ COMPONENT (used in conjunction with the PRINT action) provides printed
output pertaining to component list information for the element specified. You
can use this option alone, or in combination with one of the following PRINT
options: BROWSE, CHANGE, HISTORY, SUMMARY, or MASTER.

Chapter 4. Analyzing and Managing Software Configuration Information 4-5

4.2 SCL

4.2.6 The Set Where Statement

The SET WHERE statement is used when you do not code WHERE information in the
LIST request. The selection criteria you can enter here is the same as would be
entered with the LIST action. Again, the following clauses pertain specifically to
Endevor ACM:

 ■ WHERE component-spec

■ WHERE ACM component-spec

 4.2.7 Clear Statements

CLEAR statements clear the information that has been designated by the related SET
statements.

CLEAR BUILD clears like information you have entered in the SET BUILD
statement.

■ CLEAR OPTIONS clears like information you have entered in the SET OPTIONS
statement. Note, however, that to clear the SET OPTIONS COMPONENT
statement, you must enter the statement CLEAR OPTIONS PRINT.

■ CLEAR WHERE clears the like information you have entered in a SET WHERE
statement.

4-6 Automated Configuration Option Guide

4.3 Change Impact Analysis Functions

4.3 Change Impact Analysis Functions

 4.3.1 Overview

You can perform sophisticated change impact analysis functions using the
configuration information that Endevor ACM collects in combination with Endevor's
Software Control Language (SCL). For example, you can:

■ Analyze system behavior.

■ Propagate a component change to all affected programs.

■ Validate a system for consistent use of components.

■ Recreate past program versions.

■ Move related source components during promotion to production.

The following sections describe each of the analysis functions listed above.

4.3.2 Analyzing System Behavior

Programs sometimes abort after being moved into production. In order to fix the
cause, problems must first be identified. Problem-solving can be extremely
time-consuming when working in the absence of tools which specifically help detect
problem areas.

This example uses Endevor ACM to find out why element FINAPP01 experienced a
production outage. This trouble-shooting scenario involves four steps:

Step Action

1 Create PRINT SCL.

2 Submit the job for batch execution.

3 View the resulting report.

4 Analyze system behavior.

4.3.2.1 Step 1: Create PRINT SCL

Although you could browse change history online, the following demonstrates how
you can identify changed components using SCL's Print command as follows:

PRINT ELEMENT FINAPP�1

FROM ENVIRONMENT DEMO

 SYSTEM FINANCE

 SUBSYSTEM ACCTPAY

 TYPE COBOL

 STAGE P

OPTIONS HISTORY COMPONENTS.

Chapter 4. Analyzing and Managing Software Configuration Information 4-7

4.3 Change Impact Analysis Functions

By coding:

■ PRINT ELEMENT FINAPP01 — Instruct Endevor ACM to print element
FINAPP01.

■ FROM ENVIRONMENT — Further specifies the production stage (STAGE P) of
the ACCTPAY subsystem within the FINANCE system.

■ OPTIONS HISTORY COMPONENTS — Instruct Endevor ACM to print the
component list with history to determine what and where components changed.

■ Since no TO statement has been coded, Endevor uses the default TO C1PRINT to
print the element.

4.3.2.2 Step 2: Submit the Job for Batch Execution

Once the SCL has been coded, submit the job for batch execution using the batch
processing capabilities. The SCL commands are now automatically applied to the
information collected and stored by Endevor ACM. (For more information on
submitting the job, see the User Guide.)

4.3.2.3 Step 3: View the Resulting Report

The batch execution results in the following report:

4-8 Automated Configuration Option Guide

4.3 Change Impact Analysis Functions

BST, INC. X.XX XXXXXX E N D E V O R �4/3�/�1 �9:21:36 PAGE ����1

PRINT ELEMENT:FINAPP�1 COMPONENT HISTORY ACTION # 1 STMT # 3

���

���

�� ��

�� COMPONENT HISTORY 22MAY�1 11:33 ��

�� ��

�� ENVIRONMENT: DEMO SYSTEM: FINANCE SUBSYSTEM: ACCTPAY ��

�� ELEMENT: FINAPP�1 TYPE: COBOL STAGE: PROD ��

�� ��

���

���

---------------------- COMPONENT LEVEL INFORMATION ----------------------------

 VV.LL SYNC USER DATE TIME STMTS CCID COMMENT

 ----- ---- -------- ------- ----- ----- ------- --------------------------------

 �1.�� ZSXJMH1F 16APR�1 16:46 29 DEMO5 FINAL TEST GENERATION OF DEMO

 �1.�1 BSTUID8I �1MAY�1 12:5� 29 BSTUID8 CORRECT 3.8 DEMO

 �1.�2 BSTUID6B 15MAY�1 15:5� 29 DEMO RESTORING ELEMENTS INTO DEMO ENVIRONMENT

-------------------------- ELEMENT INFORMATION ------------------------------

VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE GROUP STG STE ENVRMNT PROCESSOR

%+�1 �1.�3 3�APR�1 17:1� FINANCE ACCTPAY FINAPP� COBOL COBNBL2 2 DEMO GCOBNBL

%+��-�1 �1.�2 16APR�1 �9:�8 FINANCE ACCTPAY FINAPP�1 COBOL COBNBL 1 � DEMO GCOBNBL

------------------------ PROCESSOR INFORMATION ------------------------------

VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE GROUP STG STE ENVRMNT PROCESSOR

%+�2 �1.�� 15MAY�1 14:31 ADMIN STANDARD GCOBNBL PROCESS 1 2 DEMO

%+�1-�2 �1.�1 2�APR�1 19:19 ADMIN STANDARD GCOBNBL PROCESS 1 2 DEMO

%+��-�1 �1.�1 14APR�1 15:�9 ADMIN STANDARD GCOBNBL PROCESS 2 � DEMO

--------------------------- INPUT COMPONENTS ------------------------------

STEP: COMPILE DD=SYSLIB VOL=BST��1 DSN=BST.EMVSDEMO.STG2.COPYLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG STE ENVRMNT

%+�2 HEADER1 �1.�� 15MAY�1 15:41 FINANCE ACCTREC HEADER1 COPYBOOK 2 2 DEMO

%+�2 PAGING �1.�� 15MAY�1 15:41 FINANCE ACCTREC PAGING COPYBOOK 2 2 DEMO

%+�1-�2 HEADER1 �1.�� 2�APR�1 18:58 FINANCE ACCTREC HEADER1 COPYBOOK 2 2 DEMO

%+�1-�2 PAGING �1.�� 2�APR�1 18:58 FINANCE ACCTREC PAGING COPYBOOK 2 2 DEMO

STEP: COMPILE DD=SYSLIB VOL=ZXS2�9 DSN=BST.STG1.DEMO.COPYLIB

Chapter 4. Analyzing and Managing Software Configuration Information 4-9

4.3 Change Impact Analysis Functions

BST, INC. X.XX XXXXXX E N D E V O R �4/3�/�1 �9:21:36 PAGE ����2

PRINT ELEMENT:FINAPP�1 COMPONENT HISTORY ACTION # 1 STMT # 3

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG STE ENVRMNT

%+��-�1 HEADER1 �1.�� 16APR�1 16:43 FINANCE GENLEDG HEADER1 COPYBOOK 1 � DEMO

%+��-�1 PAGING �1.�� 16APR�1 16:43 FINANCE ACCTREC PAGING COPYBOOK 1 � DEMO

STEP: LKED DD=SYSLIB VOL=BST��1 DSN=BST.EMVSDEMO.STG2.LOADLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG STE ENVRMNT LD

%+�1 FINAPS�1

STEP: LKED DD=SYSLIB VOL=ZXS2�9 DSN=BST.STG2.DEMO.LOADLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG STE ENVRMNT

%+��-�1 FINGLS�1

--------------------------- OUTPUT COMPONENTS ------------------------------

STEP: LKED DD=SYSLMOD VOL=BST��1 DSN=BST.EMVSDEMO.STG2.LOADLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG STE ENVRMNT LD

%+�2 FINAPP�1

%+�1-�2 FINAPP�1

STEP: CONLIST DD=C1LLIBO VOL=ZXS2�9 DSN=BST.STG1.DEMO.LISTING

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG STE ENVRMNT

%+��-�1 FINAPP�1 �1.�2 16APR�1 16:46 FINANCE ACCTPAY FINAPP�1 COBOL 1 � DEMO

STEP: CONLIST DD=C1LLIBO VOL=BST��1 DSN=BST.EMVSDEMO.STG2.LISTING

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG STE ENVRMNT

%+�2 FINAPP�1 �1.�3 15MAY�1 15:5� FINANCE ACCTPAY FINAPP�1 COBOL 2 2 DEMO

%+�1-�2 FINAPP�1 �1.�3 �1MAY�1 12:5� FINANCE ACCTPAY FINAPP�1 COBOL 2 2 DEMO

STEP: LKED DD=SYSLMOD VOL=ZXS225 DSN=BST.STG1.DEMO.LOADLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG STE ENVRMNT

%+��-�1 FINAPP�1

4.3.2.4 Step 4: Analyze System Behavior

The Processor Information section in the above component list report shows that the
processor used to compile and link the element has changed since the last compilation.
The Input Components section shows that two input components—copybooks
HEADER1 and PAGING—have changed. At this point, you can either view the
changes made to these two components online, or print a report of the changes made.

Endevor ACM allows you to analyze system behavior and quickly determine the
changes that might have caused our production failure.

4.3.3 Propagating a Component Change to All Affected Programs

When changes are made to a component, it is necessary to propagate those changes to
all programs containing that component.

In the example that follows, copybook COPYREC needs to be changed in order to
complete a change request for program C1PRTX00. Once the change is completed
and tested in program C1PRTX00, the change to copybook COPYREC will be
propagated to all programs in which it is used.

4-10 Automated Configuration Option Guide

4.3 Change Impact Analysis Functions

Transferring component changes to all affected programs requires four steps:

Step Action

1 Change and test the retrieved copybook and program.

2 Add the copybook and program to Stage 1.

3 Create LIST SCL and execute it.

4 Tailor the generated SCL and execute it.

4.3.3.1 Step 1: Change and Test the Retrieved Copybook and Program

Program C1PRTX00 was retrieved from Endevor to complete Application Systems
Request #9043. While making the change to program C1PRTX00, a change is also
made to copybook COPYREC.

4.3.3.2 Step 2: Add the Copybook and Program to Stage 1

Once the changes have been completed, program C1PRTX00 and copybook
COPYREC are added to Stage 1. Before system testing can begin, the change to
copybook COPYREC needs to be propagated to all programs in which it is used.

4.3.3.3 Step 3: Create LIST SCL and Execute It

The LIST command identifies all elements in the system Personnel that use the
copybook COPYREC as an input component.

LIST ELEMENTS �

FROM ENVIRONMENT DEM�

 SYSTEM PERSONEL

 SUBSYSTEM �

 TYPE �

 STAGE P

TO DSNAME 'BST.C1DEMO.SRCLIB'

WHERE INPUT COMPONENT EQUAL COPYREC.

By coding:

■ LIST ELEMENTS * — Instruct Endevor ACM to look at all elements, regardless
of name.

■ FROM ENVIRONMENT — Restrict the search of elements to the production
stage (STAGE P) of the Personnel system (SYSTEM PERSONEL), regardless of
subsystem and type.

■ TO DSNAME — Instruct Endevor ACM to write out the list of elements which
meet the search criteria for the data set BST.C1DEMO.SRCLIB. Since no
member name was coded in the OPTIONS statement, a default member name
(TEMPNAME) will be created. If member TEMPNAME already exists, it will
not be replaced, and this will cause an error that stops execution of the LIST
command.

Chapter 4. Analyzing and Managing Software Configuration Information 4-11

4.3 Change Impact Analysis Functions

However, if member TEMPNAME does not exist, it will be created and SCL
statements will be written identifying every element that meets the WHERE
conditions.

■ WHERE — Instruct Endevor ACM to look at every element with a component
list, and to search the component list for an input component of COPYREC.
Every element that contains INPUT COMPONENT = COPYREC will have an
SCL action statement written out to the member TEMPNAME in the
BST.C1DEMO.SRCLIB data set.

The SCL generated from the above request is as follows:

SET FROM ENVIRONMENT DEMO SYSTEM PERSONEL SUBSYSTEM EMPMAINT

TYPE COBOL STAGE NUMBER 2.

&&ACTION ELEMENT C1PRTX�� VERSION �1 LEVEL �2

&&ACTION ELEMENT C1PRTX2� VERSION �1 LEVEL �2

&&ACTION ELEMENT C1PRTX3� VERSION �1 LEVEL �5

&&ACTION ELEMENT C1PRTX4� VERSION �1 LEVEL �5

4.3.3.4 Step 4: Tailor the Generated SCL and Execute It

Now add the following SET commands to the generated SCL:

SET ACTION GENERATE.

SET OPTION COPYBACK.

SET FROM ENVIRONMENT DEMO SYSTEM PERSONEL SUBSYSTEM EMPMAINT

TYPE COBOL STAGE NUMBER 1.

&&ACTION ELEMENT C1PRTX�� VERSION �1 LEVEL �2.

&&ACTION ELEMENT C1PRTX2� VERSION �1 LEVEL �2.

&&ACTION ELEMENT C1PRTX3� VERSION �1 LEVEL �5.

&&ACTION ELEMENT C1PRTX4� VERSION �1 LEVEL �5.

By coding:

■ SET ACTION — Instruct Endevor ACM to change all of the &&ACTION
statements to GENERATE. ("&&ACTION" appears on the action cards generated
for each element/component when you do not specify an action in the LIST
request.) The GENERATE action executes the generate processor (compile) for all
programs which use the copybook COPYREC.

■ SET OPTION — By setting the COPYBACK option, Endevor ACM copies back
the current version/level of each program to Stage 1 (if it doesn't already exist in
Stage 1) before executing the generate processor.

4.3.4 Validating a System for Consistent Use of Components

In this example, a large number of changes have gone into production. Many common
routines have changed which, in turn, have affected programs. Endevor ACM allows
you to make sure that all programs are using components (copybooks, CALLed
routines, etc.) that are at the right version/level.

4-12 Automated Configuration Option Guide

4.3 Change Impact Analysis Functions

Validating consistent use of components involves three steps:

Step Action

1 Create LIST SCL and execute it.

2 View Execution Report.

3 Check generated SCL for inconsistent components.

4.3.4.1 Step 1: Create LIST SCL and Execute It

In this example, we use the LIST command to select all elements and their related
components.

LIST ELEMENTS �

FROM ENVIRONMENT DEMO

 SYSTEM PERSONEL

 SUBSYSTEM �

 TYPE �

 STAGE P

TO DSNAME 'BST.C1DEMO.SRCLIB'

 MEMBER 'PVALID'

WHERE COMPONENTS = �

BUILD WITH COMPONENTS

OPTIONS DETAIL REPORT.

By coding:

■ LIST ELEMENTS * — Instruct Endevor ACM to search for all (*) elements as
specified by the FROM statement

■ FROM ENVIRONMENT — Restrict the search to the production stage (STAGE
P) of the Personnel system (SYSTEM PERSONEL), regardless of subsystem and
type.

■ TO DSNAME — Instruct Endevor ACM to write out the list of elements which
meet the search criteria to the data set BST.C1DEMO.SRCLIB.

■ WHERE COMPONENTS = * — Instruct Endevor ACM to select each element
with a component list in the Personnel system in Stage P.

■ BUILD WITH COMPONENTS — Instruct Endevor ACM to build actions for
each element and all input components for the element.

■ OPTIONS DETAIL REPORT — Instruct Endevor ACM to list each element
searched and its related components in the Execution Report. Endevor ACM sorts
the information collected by environment, system, subsystem, type, stage, and
element, and produces List-generated SCL in the member PVALID. Wherever
there are inconsistent components, Endevor ACM highlights them.

There are two outputs: an Execution Report and List-generated SCL.
 You always receive an Execution Report, but this time Endevor ACM produces a
larger Execution Report because of the DETAIL REPORT option.

Chapter 4. Analyzing and Managing Software Configuration Information 4-13

4.3 Change Impact Analysis Functions

 The information in the report is then sorted and sent to the indicated member. All
inconsistencies are identified within the member PVALID.

4.3.4.2 Step 2: View Execution Report

The first portion of the sample Execution Report is a Syntax Request Report which
numbers the SCL statements and highlights any syntax errors in the SCL. Each
statement can result in more than one action being performed.

 17APR�1 15:3� PAGE 1

E N D E V O R S Y N T A X R E Q U E S T R E P O R T

REQUESTED BY: ZSXLDG1C

15:3�:47 C1Y��15I STARTING PARSE OF REQUEST CARDS

 STMT #1

 LIST ELEMENTS �

FROM ENVIRONMENT 'DEMO' SYSTEM 'PERSONEL' SUBSYSTEM 'EMPMAINT'

 TYPE � STAGE P

TO DSNAME 'BST'.C1DEMO.SRCLIB'

WHERE COMPONENTS = �

BUILD WITH COMPONENTS

OPTIONS MEMBER PVALID

 DETAIL REPORT

 STMT #2

EOF STATEMENT GENERATED

15:3�:48 C1Y��16I REQUEST CARDS SUCCESSFULLY PARSED

The second section of the Execution Report details each action generated for the
original LIST SCL statement that meets the WHERE selection criteria. Each action is
listed because of the OPTIONS DETAIL REPORT clause in the SCL. If this option
had not been specified, only one action—LIST ELEMENT *—would be generated
and, consequently, Endevor would search for matches that meet the WHERE selection
criteria.

In this example, the element C1CALLER is the first element that meets the criteria.
The action request has been fully expanded, listing the full system name, subsystem
name, type, and stage of the element.

4-14 Automated Configuration Option Guide

4.3 Change Impact Analysis Functions

This particular Execution Report consists of two pages; the first page is shown below.
Notice that for element C1CALLER, the input components consist of copybooks and
INCLUDE statements. For input components with footprints, Endevor generates a
SET FROM ENVIRONMENT statement. For input components without footprints,
Endevor generates a SET FROM DSNAME statement.

17APR�1 15:3� PAGE 1

E N D E V O R E X E C U T I O N R E P O R T

REQUESTED BY: ZSXLDG1C

15:3�:55 C1G�2�2I ACTION #1 / STMT # 1

15:3�:55 C1G�2�3?I LIST ELEMENT C1CALLER

15:3�:55 C1G�2�4I FROM ENVIRONMENT:DEMO SYSTEM: PERSONAL SUBSYSTEM: EMPMAINT TYPE: COBOL STAGE:P

15:3�:55 C1G�2�5I TO DENAME: BST.C1DEMO.SRCLIB

SET FROM ENVIRONMENT DEMO SYSTEM PERSONEL SUBSYSTEM: EMPMAINT

TYPE COBOL STAGE NUMBER 2 .

&&ACTION ELEMENT C1CALLER VERSION �1 LEVEL �� .

SET FROM ENVIRONMENT DEMO SYSTEM PERSONEL SUBSYSTEM EMPMAINT

TYPE COPY STAGE NUMBER 2 .

&&ACTION ELEMENT WSWITCH VERSION �1 LEVEL �1 .

SET FROM ENVIRONMENT DEMO SYSTEM PERSONEL SUBSYSTEM EMPMAINT

TYPE INCLUDES STAGE NUMBER 2 .

&&ACTION ELEMENT FDPRINT VERSION �1 LEVEL �3 .

&&ACTION ELEMENT FDPRINTS VERSION �1 LEVEL �2 .

&&ACTION ELEMENT PDSTOP VERSION �1 LEVEL �3 .

SET FROM DSNAME BST.QATEST.LOADLIB2

&&ACTION ELEMENT C1SUB�1

&&ACTION ELEMENT C1SUB�2

15:3�:56 C1G�2��I REQUEST PROCESSING FOR ELEMENT C1CALLER COMPLETED, HIGHEST Endevor-C1 RC WAS ����

15:3�:56 C1G�2�2I ACTION # 2 / STMT # 1

15:3�:56 C1G�2�3I LIST ELEMENT C1SUB�1

15:3�:56 C1G�2�4I FROM ENVIRONMENT:DEMO SYSTEM: PERSONEL SUBSYSTEM: EMPMAINT TYPE: COBOL STAGE:P

15:3�:56 C1G�2�5I TO DSNAME: BST.C1DEMO.SRCLIB

SET FROM ENVIRONMENT DEMO SYSTEM PERSONEL SUBSYSTEM EMPMAINT

TYPE COBOL STAGE NUMBER 2 .

&&ACTION ELEMENT C1SUB�1 VERSION �1 LEVEL �� .

SET FROM ENVIRONMENT DEMO SYSTEM PERSONEL SUBSYSTEM EMPMAINT

TYPE COPY STAGE NUMBER 2 .

&&ACTION ELEMENT C1CLINK VERSION �1 LEVEL �� .

&&ACTION ELEMENT WSWITCH VERSION �1 LEVEL �� .

SET FROM ENVIRONMENT DEMO SYSTEM PERSONEL SUBSYSTEM EMPMAINT

TYPE INCLUDES STAGE NUMBER 2 .

&&ACTION ELEMENT PDSTOP VERSION �1 LEVEL �3 .

SET FROM ENVIRONMENT QA SYSTEM PROCESS SUBSYSTEM PROCES

Chapter 4. Analyzing and Managing Software Configuration Information 4-15

4.3 Change Impact Analysis Functions

 The second page of the Execution Report is shown below.

17APR�1 15:3� PAGE 2

E N D E V O R E X E C U T I O N R E P O R T

REQUESTED BY: ZSXLDG1C

15:3�:56 C1G�2��I REQUEST PROCESSING FOR ELEMENT C1SUB�1 COMPLETED,HIGHEST Endevor-C1 RC WAS ����

15:3�:56 C1G�2�2I ACTION # 3 / STMT # 1

15:3�:56 C1G�2�3I LIST ELEMENT C1SUB�2

15:3�:56 C1G�2�4I FROM ENVIRONMENT: DEMO SYSTEM: PERSONEL SUBSYSTEM: EMPMAINT TYPE: COBOL STAGE: P

15:3�:56 C1G�2�5I TO DSNAME: BST.C1DEMO.SRCLIB

SET FROM ENVIRONMENT DEMO SYSTEM PERSONEL SUBSYSTEM: EMPMAINT

TYPE COBOL STAGE NUMBER 2.

&&ACTION ELEMENT C1SUB�2 VERSION �1 LEVEL �� .

SET FROM ENVIRONMENT DEMO SYSTEM PERSONEL SUBSYSTEM EMPMAINT

TYPE COPY STAGE NUMBER 2 .

&&ACTION ELEMENT C1CLINK VERSION �1 LEVEL �� .

&&ACTION ELEMENT WSWITCH VERSION �1 LEVEL �� .

SET FROM ENVIRONMENT DEMO SYSTEM PERSONEL SUBSYSTEM EMPMAINT

TYPE INCLUDES STAGE NUMBER 2 .

&&ACTION ELEMENT PDSTOP VERSION �1 LEVEL �2 .

15:3�:57 C1G�2��I REQUEST PROCESSING FOR ELEMENT C1SUB�2 COMPLETED, HIGHEST Endevor-C1 RC WAS ����

The Execution Report finishes up with an Action Summary Report.

17APR�1 15:3� PAGE 1

E N D E V O R S U M M A R Y R E P O R T

REQUESTED BY: ZSXLDG1C

C1G�222I PROC NDVR +---------FROM INFORMATION --------+ ACTION ACTION STMT PAG

C1G�2�6I ACTION ELEMENT RC RC ENVIRONMENT SYSTEM SUBSYSTEM TYPE STAGE TIME NUMBER NUMBER NUMBER

C1G�2�7I LIST C1CALLER ���� DEMO PERSONEL EMPMAINT COBOL p 15:3�:55 1 1 1

C1G1�2�7I LIST C1SUB�1 ���� DEMO PERSONEL EMPMAINT COBOL p 15:3�:56 2 1 1

C1G1�2�7I LIST C1SUB�2 ���� DEMO PERSONEL EMPMAINT COBOL p 15:3�:56 3 1 2

C1Y��38I END OF JOB. HIGHEST Endevor-C1 RC = ����

4.3.4.3 Step 3: Check Generated SCL for Inconsistencies

The components are then collected and sorted before being written to the file specified
in the TO statement: 'BST.C1DEMO.SRCLIB(PVALID)'. The resulting List-generated
SCL pinpoints inconsistent components, that is, components which share the same
name but indicate more than one version/level. These inconsistencies are clearly
highlighted in two ways:

1. An asterisk (*) appears in column 1, to the left of the inconsistent components.

2. A flag indicating duplication (**DUPLICATE**) appears to the right of the
inconsistent components.

4-16 Automated Configuration Option Guide

4.3 Change Impact Analysis Functions

In the example, the List-generated SCL shown below indicates two inconsistent
components:

SET FROM ENVIRONMENT DEMO SYSTEM PERSONEL SUBSYSTEM EMPMAINT

TYPE COBOL STAGE NUMBER 2.

&&ACTION ELEMENT C1CALLER VERSION �1 LEVEL ��.

&&ACTION ELEMENT C1SUB�1 VERSION �1 LEVEL ��.

&&ACTION ELEMENT C1SUB�2 VERSION �1 LEVEL ��.

SET FROM ENVIRONMENT DEMO SYSTEM PERSONEL SUBSYSTEM EMPMAINT

TYPE COPY STAGE NUMBER 2.

&&ACTION ELEMENT C1CLINK VERSION �1 LEVEL ��.

&&ACTION ELEMENT WSWITCH VERSION �1 LEVEL ��.��DUPLICATE��

&&ACTION ELEMENT WSWITCH VERSION �1 LEVEL �1.

SET FROM ENVIRONMENT DEMO SYSTEM PERSONEL SUBSYSTEM EMPMAINT

TYPE INCLUDES STAGE NUMBER 2.

&&ACTION ELEMENT FDPRINT VERSION �1 LEVEL �3.

&&ACTION ELEMENT FDPRINTS VERSION �1 LEVEL �2.

&&ACTION ELEMENT PDSTOP VERSION �1 LEVEL �2.��DUPLICATE��

&&ACTION ELEMENT PDSTOP VERSION �1 LEVEL �3.

SET FROM DSNAME BST.QATEST.LOADLIB2 .

 &&ACTION ELEMENT C1CALLER .

 &&ACTION ELEMENT C1SUB�1 .

 &&ACTION ELEMENT C1SUB�2 .

By viewing the generated SCL for asterisks (*), you can see that there are two
components with duplicate version/levels. Refer back to the Execution Report in Step
2 and find the elements that have the inconsistent components (noted by arrows).

For example, to find the element using the input component PDSTOP Version 01
Level 02, scan the Execution Report for all occurrences of that component. Then
check the list action data to determine which elements are using the older level of
PDSTOP. In this example, the element in question is C1SUB02.

4.3.5 Recreating Past Program Versions

Sometimes you may want to recreate a program's load module as it existed at a past
point in time. This requires using not only an older version/level of the element, but
also all the related components that were used at the date/time the load was created.

In the example that follows, program FINAPP01 needs to be recreated as of a
production execution on May 1, 2001. By viewing the Component Level Information
on the component list for the element, you can pinpoint the desired recreation
date/time. Using the information in that version/level of the component list, you can
then recreate the element and its components in Stage 1.

Chapter 4. Analyzing and Managing Software Configuration Information 4-17

4.3 Change Impact Analysis Functions

Recreating past program versions involves three steps:

Step Action

1 Browse the component list at Stage 2.

2 Code LIST SCL and submit for execution.

3 Tailor the generated SCL and submit for execution.

4.3.5.1 Step 1: Browse the Component List at Stage 2

By browsing an element's component list at Stage 2, you can determine the generate
date/time of the module you want to recreate.

� �
���

���

�� ��

�� COMPONENT BROWSE 22MAY�1 11:25 ��

�� ��

�� ENVIRONMENT: DEMO SYSTEM: FINANCE SUBSYSTEM: ACCTPAY ��

�� ELEMENT: FINAPP�1 TYPE: COBOL STAGE: PROD ��

�� ��

���

���

---------------------- COMPONENT LEVEL INFORMATION ---------------------------

 VV.LL SYNC USER DATE TIME STMTS CCID COMMENT

 ----- ---- -------- ------- ----- ----- ------------ --

 �1.�� ZSXJMH1F 16APR�1 16:46 29 DEMO5 FINAL TEST GENERATION OF DEMO

 �1.�1 BSTUID8I �1MAY�1 12:5� 29 BSTUID8 CORRECT 3.9 DEMO

 �1.�2 BSTUID6B 15MAY�1 15:5� 29 DEMO RESTORING ELEMENTS INTO DEMO ENVIRONMENT

-------------------------- ELEMENT INFORMATION ------------------------------

VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE GROUP STG STE ENVRMNT PROCESSOR

 +�1 �1.�3 3�APR�1 17:1� FINANCE ACCTPAY FINAPP�1 COBOL COBNBL 2 2 DEMO GCOBNBL

------------------------ PROCESSOR INFORMATION ------------------------------

VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE GROUP STG STE ENVRMNT PROCESSOR

%+�1 �1.�� 15MAY�1 14:31 ADMIN STANDARD GCOBNBL PROCESS 1 2 DEMO

-------------------------- SYMBOL INFORMATION ------------------------------

 DEFINED SYMBOL VALUE

+�� PROCESSOR COBLIB SYS1.VSCLLIB

+�� PROCESSOR COBSTPLB SYS1.VSCOLIB

 +�1 PROC GROUP CSYSLIB1 BST.EMVSDEMO.STG2.COPYLIB

+�1 PROCESSOR CSYSLIB2 BST.EMVSDEMO.STG2.COPYLIB

+�� PROCESSOR EXPINC N

 +�1 PROC GROUP LISTLIB BST.EMVSDEMO.STG2.LISTING

 +�1 PROC GROUP LOADLIB BST.EMVSDEMO.STG2.LOADLIB

 +�1 PROC GROUP LSYSLIB1 BST.EMVSDEMO.STG2.LOADLIB

+�1 PROCESSOR LSYSLIB2 BST.EMVSDEMO.STG2.LOADLIB

+�� PROCESSOR MEMBER &C1ELEMENT

+�� PROCESSOR MONITOR COMPONENTS

+�1 PROCESSOR PARMCOB LIB,NOSEQ,OBJECT,APOST,LANGLVL(1)

+�� PROCESSOR PARMLNK LIST,MAP,SIZE(9999K)

+�� PROCESSOR SYSOUT A

+�� PROCESSOR WRKUNIT SYSDA

�

�

4-18 Automated Configuration Option Guide

4.3 Change Impact Analysis Functions

� �
--------------------------- INPUT COMPONENTS ------------------------------

STEP: COMPILE DD=SYSLIB VOL=BST��1 DSN=BST.EMVSDEMO.STG2.COPYLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG STE ENVRMN

%+�2 HEADER1 �1.�1 15MAY�1 15:41 FINANCE ACCTREC HEADER1 COPYBOOK 2 2 DEMO

%+�2 PAGING �1.�2 15MAY�1 15:41 FINANCE ACCTREC PAGING COPYBOOK 2 2 DEMO

STEP: LKED DD=SYSLIB VOL=BST��1 DSN=BST.EMVSDEMO.STG2.LOADLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG STE ENVRMNT

 +�1 FINAPS�1

--------------------------- OUTPUT COMPONENTS ------------------------------

STEP: LKED DD=SYSLMOD VOL=BST��1 DSN=BST.EMVSDEMO.STG2.LOADLIB

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG STE ENVRMNT

%+�2 FINAPP�1

STEP: CONLIST DD=C1LLIBO VOL=BST��1 DSN=BST.EMVSDEMO.STG2.LISTING

MEMBER VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TYPE STG STE ENVRMNT

%+�2 FINAPP�1 �1.�3 15MAY�1 15:5� FINANCE ACCTPAY FINAPP�1 COBOL 2 2 DEMO

�

�

Browsing the component list, you can see that version/level 01.01 of the component
list (created on May 1, 2001 at 12:50 p.m.) contains the correct element/component
information needed to recreate the desired load module.

This component list (VV.LL 01.02) also shows that the input components represent
elements that are currently at the following version/levels:

■ element FINAPP01 is at a VV.LL of 01.03

■ element HEADER1 is at a VV.LL of 01.01

■ element PAGING is at a VV.LL of 01.02

These may or may not be the VV.LL of the elements desired.

4.3.5.2 Step 2: Code LIST SCL and Submit for Execution

After browsing the component list, you are ready to code SCL using the LIST
command.

LIST ELEMENTS FINAPP�1

FROM ENVIRONMENT DEMO

 SYSTEM FINANCE

 SUBSYSTEM ACCTPAY

 TYPE COBOL

 STAGE P

TO DSNAME 'BST.C1DEMO.SRCLIB'

 MEMBER 'RC1SUB�1'

WHERE GENERATE DATE = �5/�1/�1 TIME = 12:5�

COMPONENTS = �

BUILD WITH COMPONENTS LEVEL ACTUAL.

By coding:

■ LIST ELEMENTS FINAPP01 — Instruct Endevor ACM to search for element
FINAPP01.

Chapter 4. Analyzing and Managing Software Configuration Information 4-19

4.3 Change Impact Analysis Functions

■ FROM ENVIRONMENT — Restrict the search to the production stage (STAGE
P) of the ACCTPAY subsystem within the FINANCE system.

■ TO DSNAME — Instruct Endevor ACM to write out the list of elements which
meet the search criteria for the data set BST.C1DEMO.SRCLIB.

■ WHERE GENERATE DATE = — Instruct Endevor ACM to view the component
list for element FINAPP01 that was created specifically on 05/01/01 at 12:50.

■ BUILD WITH COMPONENTS ACTUAL — Instruct Endevor ACM to use the
specific version/level for each input component found on that component list.
(Otherwise, Endevor ACM would use the current version/level of each input
component.)

Submit the LIST request for batch processing. For more information, see the User
Guide.

4.3.5.3 Step 3: Tailor the Generated SCL and Submit for Execution

The generated SCL in member TEMPNAME of data set 'BST.C1DEMO.SRCLIB'
looks like this example:

SET FROM ENVIRONMENT DEMO SYSTEM FINANCE SUBSYSTEM ACCTPAY

TYPE COBOL STAGE NUMBER 2.

&&ACTION ELEMENT FINAPP�1 VERSION �1 LEVEL ��.

SET FROM ENVIRONMENT DEMO SYSTEM FINANCE SUBSYSTEM ACCTPAY

TYPE COPY STAGE NUMBER 2.

&&ACTION ELEMENT HEADER1 VERSION �1 LEVEL ��.

&&ACTION ELEMENT PAGING VERSION �1 LEVEL �1.

By viewing the component list from May 1, 2001 at 12:50 p.m., you can see that:

■ element FINAPP01 was at a VV.LL of 01.00.

■ element HEADER1 was at a VV.LL of 01.00.

■ element PAGING was at a VV.LL of 01.01.

Thus, we see that elements FINAPP01, HEADER1, and PAGING have all been
changed since May 1, 2001.

Now, we edit this SCL by coding RETRIEVE and ADD actions as follows:

4-20 Automated Configuration Option Guide

4.3 Change Impact Analysis Functions

SET ACTION RETRIEVE

SET TO FILE TMPPDS.

SET OPTIONS COMMENT 'RETRIEVE FINAPP�1' CCID 'EMG�195'.

SET FROM ENVIRONMENT DEMO SYSTEM FINANCE SUBSYSTEM ACCTPAY

TYPE COBOL STAGE NUMBER 2 .

&&ACTION ELEMENT FINAPP�1 VERSION �1 LEVEL ��

SET FROM ENVIRONMENT DEMO SYSTEM FINANCE SUBSYSTEM ACCTPAY

TYPE COBOL STAGE NUMBER 2 .

&&ACTION ELEMENT HEADER1 VERSION �1 LEVEL ��

&&ACTION ELEMENT PAGING VERSION �1 LEVEL �1 .

CLEAR TO ALL

CLEAR FROM ALL.

SET FROM ENVIRONMENT DEMO SYSTEM FINANCE SUBSYSTEM ACCTPAY

TYPE COBOL STAGE NUMBER 1

&&ACTION ELEMENT FINAPP�1 VERSION �1 LEVEL �� .

SET FROM ENVIRONMENT DEMO SYSTEM FINANCE SUBSYSTEM ACCTPAY

TYPE COBOL STAGE NUMBER 1 .

&&ACTION ELEMENT HEADER1 VERSION �1 LEVEL �� .

&&ACTION ELEMENT PAGING VERSION �1 LEVEL �1 .

Note: The ADD action would create new levels that will eliminate intervening levels
(regression). An alternative would be not to add to Stage 1, but to compile
and test in test libraries.

When you finish editing the SCL, resubmit the request for batch processing. For more
information, see the User Guide.

4.3.6 Moving Related Source Components During Promotion to
Production

Often, a request causes changes to several programs. Once tested and changed at
Stage 1, a program and its related components will need to be moved to Stage 2.
Typically, you would change the programs for a request under the same CCID. To
insure that a CCID moves successfully from Stage 1 to Stage 2 with related
components, specify the move not only by CCID, but WITH COMPONENTS.

In the following example, we are about to move a CCID from Stage 1 to Stage 2.
This CCID is an Application System Request (ASR#053010). When moving this
CCID, we also want to move all related components.

The scenario for moving the CCID and its related components from Stage 1 to Stage 2
involves four steps:

Step Action

1 Create LIST SCL.

2 Run a batch execution (to generate SCL using the LIST
action).

3 Tailor the generated SCL.

4 Run a batch execution (to execute the tailored SCL).

Chapter 4. Analyzing and Managing Software Configuration Information 4-21

4.3 Change Impact Analysis Functions

4.3.6.1 Step 1: Create LIST SCL

Begin the move scenario by creating SCL using the LIST command. The LIST
command finds all elements modified by a specific CCID in Stage 1 (and their related
input components).

To begin moving CCID ASR#053010 from Stage 1 to Stage 2, code the SCL as
follows:

LIST ELEMENTS �

FROM ENVIRONMENT DEMO

 SYSTEM PERSONEL

 SUBSYSTEM �

 TYPE �

 STAGE D

TO DSNAME 'BST.C1DEMO.REQDSN'

WHERE CCID EQUALS 'ASR#�53�1�'

INPUT COMPONENTS EQUAL '�'

BUILD WITH COMPONENTS LEVEL ACTION MOVE

OPTIONS MEMBER 'ASR53�1�'.

By coding:

■ LIST ELEMENTS * — Instruct Endevor ACM to list all (*) the elements from
the PERSONEL system within the DEMO environment. Specify all (*)
subsystems and types, and identify the stage as 'D' (Stage 1).

■ TO DSNAME — Instruct Endevor ACM to write out the SCL request TO a data
set named 'BST.C1DEMO.REQDSN'.

■ WHERE CCID EQUALS — Instruct Endevor ACM to find all (*) input
components for the CCID 'ARS#053010'.

■ BUILD WITH COMPONENTS ACTION MOVE — Instruct Endevor ACM to
build this SCL in this data set member with all the components, using a MOVE
action rather than the default of &&ACTION.

■ OPTIONS — Specify that the member for the requested data set,
BST.C1DEMO.REQDSN, be named 'ASR53010'.

4.3.6.2 Step 2: Run a Batch Execution

Once the SCL has been coded, run a batch execution to generate SCL using the LIST
action. (This will be the first of two executions.) Your SCL commands are now
automatically applied to the information which is collected and stored by Endevor
ACM. The end result is a list of elements and related components.

In the example, the outcome is a list of all elements for the CCID (ASR#053010) and
their related input components (programs, copybooks, INCLUDE modules).

4-22 Automated Configuration Option Guide

4.3 Change Impact Analysis Functions

SET FROM ENVIRONMENT DEMO SYSTEM PERSONNEL SUBSYSTEM EMPMAINT

TYPE COBOL STAGE NUMBER 1.

 &&MOVE ELEMENT C1CALLER VERSION �1 LEVEL �� .

 &&MOVE ELEMENT C1SUB�1 VERSION �1 LEVEL �� .

 &&MOVE ELEMENT C1SUB�2 VERSION �1 LEVEL �� .

SET FROM ENVIRONMENT DEMO SYSTEM PERSONNEL SUBSYSTEM EMPMAINT

TYPE COPY STAGE NUMBER 1.

 &&MOVE ELEMENT C1CLINK VERSION �1 LEVEL �� .

 &&MOVE ELEMENT WSWITCH VERSION �1 LEVEL �� .

SET FROM ENVIRONMENT DEMO SYSTEM PERSONNEL SUBSYSTEM EMPMAINT

TYPE INCLUDES STAGE NUMBER 1.

 &&MOVE ELEMENT FDPRINT VERSION �1 LEVEL �3 .

 &&MOVE ELEMENT FDPRINTS VERSION �1 LEVEL �2 .

 &&MOVE ELEMENT PDSTOP VERSION �1 LEVEL �2 .

SET FROM DSNAME BST.QATEST.LOADLIB1 .

 &&MOVE ELEMENT C1SUB�1 .

 &&MOVE ELEMENT C1SUB�2 .

4.3.6.3 Step 3: Tailor the Generated SCL

In the extracted sample below, the SET FROM DSNAME statement highlights that
some "non-footprinted" input components should also be moved to Stage 2.

SET FROM DSNAME BST.QATEST.LOADLIB1 .

MOVE ELEMENT C1SUB�1 .

MOVE ELEMENT C1SUB�2 .

These load modules have source inside of Endevor, and that source has already been
selected by LIST as noted by elements 2 and 3 in the first SET command. You can
now delete this SET statement and associated MOVE ELEMENT statements.

4.3.6.4 Step 4: Run a Final Batch Execution

At this point, you can submit the SCL for final batch execution. (For more
information, see the User Guide.)
 Once executed, all related components will be automatically moved with a module as
it is promoted from one stage of development to another. In the example, all
components relating to the CCID ARS#053010 will be moved with that CCID as it is
promoted from Stage 1 to Stage 2.

4.3.7 Adding Related Elements to a Component List

You can use the CONRELE utility to include entities related to an element in a
component list. The entities can be data sets, CASE entities, JCL, parameter list
members, documentation members, etc. The entities do not have to be Endevor
elements.

CONRELE accepts user syntax from the ENDVRIPT DD statement. After the parsing
process is complete the data is formatted as special component record types and

Chapter 4. Analyzing and Managing Software Configuration Information 4-23

4.3 Change Impact Analysis Functions

processed with the rest of the component list. The related data portion is appended to
the end of the component list. You are not required to store the input in Endevor.

You must include the CONRELE utility as a processor step and you must provide the
input. Use the following sample processor to execute CONRELE:

//STEPxx EXEC PGM=CONRELE

//NDVRIPT DD DSN=&user.data.set,DISP=shr

For more information about the CONRELE utility, see the Extended Processors Guide.

4.3.8 Writing Elements to an External Location

The CONWRITE utility allows you to take component list data and store it in an
external data set or use the component list data as input to other processes. You must
first use the CONRELE utility to create related input components, related output
components, related objects and related comments before using the CONWRITE
utility.

You must use the extended form of the CONWRITE utility to extract component list
records. CONWRITE reads WRITE ELEMENT control statements from the
CONWIN DD statement to determine which component list records to extract.

You can write the component list record to an external data set or you can pass the
component list record to a user specified exit program. Sample JCL for using the
CONWIN DD statement to extract a component list with the extended form of
CONWRITE is shown below:

//WRITE EXEC PGM=CONWRITE

//COMPOUT DD DSN=&user.data.set,DISP=PASS,UNIT=SYSDA,

// SPACE=(TRK,(3,5),RLSE),

// DCB=(RECFM=VB,LRECL=8�,BLKSIZE=616�,DSORG=PS)

//CONWIN DD �

WRITE ELEMENT &c1element

FROM ENV &c1envmnt SYSTEM &c1system SUBSYSTEM &c1subsys

TYPE &c1wltype STAGE &c1stgid

TO DDN COMPOUT

 OPTION COMPONENT.

/�

For more information about the CONWRITE utility, see the Extended Processors
Guide.

4-24 Automated Configuration Option Guide

 Index

A
ACM

component spec clause, Where 4-4
Query Facility (ACMQ)

about 1-7
enabling 2-4
using 3-4

source translators compatibility 2-18
ACM Query panel 3-6
ACMQ Create GENERATE SCL panel 3-8
Action processing 2-65
Actions

Add 4-21
apply to options in List request 4-5
cards, view version levels of 4-4
delete 2-22
list 4-3
Print 4-4
statement, apply information to 4-4

Activating ACM and the Query Facility 2-4
Actual option, Build Level clause 4-4
Add action 4-21
Adding elements to component list 4-23
Analysis functions, change impact 4-7
Analyze system behavior 4-7
Apply options to actions in List request 4-5
Audit stamp 1-8, 2-64

B
Banner 2-52
Base/Delta technology 2-31
Batch reporting 1-7
BC1JACMD member 2-8
BC1PMVCL utilities 2-21
Behavior, analyzing system 4-7
Binder 2-18
Browse

element (BX) 2-41

Browse (continued)
Stage 2 4-18

BUILD
clauses 4-4
USING MAP 2-36

BX 2-41

C
C1DEFLTS table 2-5
CCID 4-21
Change

history (HX) 2-47
impact analysis functions 4-7
propagating to programs 4-10

Check generated SCL for inconsistencies 4-16
Clauses

Build 4-4
Options Detail Report 4-14
WHERE 4-3

Clear statements 4-6
Code SCL 4-19
Coding options for Build Level clause 4-4
Collecting data 1-8, 2-18
Commands

LIST 1-7, 4-11
SCL PRINT 1-7, 4-7
Set 4-12

Comments
related 2-64

Compatibility, ACM source translators 2-18
Component

about ACM 1-6
Changes (CX) 2-44
data 1-7
footprints 2-64
input 2-58
level 2-31
Level Information 2-53, 4-17
list

about 2-27

Index X-1

Component (continued)
list (continued)

adding related elements 4-23
fields 2-52

location information 4-3
Monitor 2-18
monitoring in dynamically allocated data set 2-19
monitoring input and output 2-20
option, Print action 4-4
output 2-59
propagating changes 4-10
renumbering levels 2-33
Set 4-5
spec clauses, Where 4-3
storing list data in external data set 4-24
using list data as input 4-24
validating consistent use 4-12

Component-name clause, Through 4-3
Components-used report 2-11
Compound criteria 4-4
Configuration

information, storing 2-27
management, software 1-4

Confirmation panel 2-36
CONLIST utility 2-18
CONRELE utility 2-32, 4-23
CONSCAN processor utility 2-32
Consistent use of components, validating 4-12
Control

File, Master 4-3
Language, Software (SCL) 1-7

CONWIN DD statement 4-24
CONWRITE utility 4-24
Create data sets 2-8
Criteria, compound 4-4
Cross-reference

components 1-7
data sets 1-5, 2-7

Current option, Build Level clause 4-4
CX 2-44

D
Data

collecting 1-8, 2-18
component 1-7
monitoring 2-18
set

monitoring components in dynamically
allocated 2-19

relationships, JCL 2-32
space requirements 2-7

Data (continued)
set (continued)

storing component list in external 4-24
where-used analysis 1-5

storage 1-8
Date/time of module to recreate, determining 4-18
DD statements 1-6, 2-19
Define data sets 2-8
Delete action 2-22
Delta

Base technology 2-31
levels 1-6

Determining date/time of module to recreate 4-18
Difference between component and element levels 2-32
Display

batch reporting 1-7
component

changes 2-44
data 1-7

Element/Component lists panel fields 2-36
summary information 2-39

DISPLAY LIST 2-36

E
Elements

action processing 2-65
adding to component list 4-23
Browse 2-41
dependencies 2-65
FINAPP01 2-41
generating 4-3
information 2-27, 2-54
level 2-32
scan 4-3
Selection List 2-36
writing to external location 4-24

Enabling ACM and the Query Facility 2-4
Endevor ACM Submit JOBCARD Statements

panel 3-11
ENDVRPT DD statement 4-23
Estimate space requirements 2-7
Examples

analyzing system behavior 4-7
moving source components 4-21
processor for CONRELE 4-24
recreating load modules 4-17
validating consistent use of components 4-12

Executable storage format 2-18
Execution

processor 2-58

X-2 Automated Configuration Option Guide

Execution (continued)
report 4-13

Extracting component list 4-24

F
Facility

ACM Query (ACMQ)
about 1-7
enabling 2-4
using 3-4

Fields
Banner 2-52
component list 2-52
display element/component lists panel 2-36
input components 2-58
output components 2-59
processor information 2-55
related comments 2-64
Summary of Levels panel 2-40
symbol information 2-57

File, Master Control 4-3
FINAPP01 element 2-41
Footprints 1-8, 2-64
Foreground Query options 1-7
Freeform language 4-3
From environment 4-11
Functions

ACM 2-3
change impact analysis 4-7

G
Generate

elements or members 4-3
processor 2-20

Generation
maximums 1-7
SCL 3-3

Group Symbolics panel, Processor 2-27

H
Highest-level qualifier 2-8
History, change (HX) 2-47
HX 2-47

I
Impact analysis functions, change 4-7
Including entities in component list 4-23

Inconsistencies, check generated SCL for 4-16
Information

Component
Level 4-17
location 4-3

display summary 2-39
element 2-54
online, view configuration 1-7
processor 2-55
relationships 2-32
storing configuration 2-27
symbol 2-57

Initialize data sets 2-8
Input

components
about 2-27
fields 2-58
monitoring 2-20

using component list data as 4-24
Input/Output component footprints 2-64
iprfx variable 2-8
iqual variable 2-8

J
JCL 2-32

K
Keyword for DD statement 1-6, 2-19

L
Label, unit 2-9
Language

freeform 4-3
Software Control (SCL) 1-7

Level
clause, Build 4-4
component information 2-53
Information, Component 4-17
number

component list 1-7
elements 4-3

panel fields 2-40
Linkage editor 2-18
List

action 4-3
adding elements to component 4-23
command

example 4-11
implode and explode information 1-7

Index X-3

List (continued)
component 1-6
Element Selection 2-36
elements 4-11
request, apply options to actions 4-5

Load
data sets 2-9
modules

footprints 2-64
move processor 2-21
recreating 4-17

Location
information 4-3
writing elements to external 4-24

M
Maintaining data sets 2-17
Management, software configuration 1-4
MAP, BUILD USING 2-36
Master Control File 4-3
Maximum generations for component list 1-7
Members

BC1JACMD 2-8
generating 4-3
related 2-62
scan 4-3

Menus
enabling ACM 2-4
viewing component lists 2-34

Modify
C1DEFLTS Table 2-5
NDVRUSER panel 3-4

Modules
load

footprints 2-64
move processor 2-21

recreating load 4-17
Monitor, component 1-6
MONITOR=COMPONENTS 1-8, 2-19
Monitoring

components 2-20
components in dynamically allocated data sets 2-19
data 2-18

Move
Component List 2-21
processor 2-21
source components 4-21

N
Name masking 1-13
NDVRUSER panel 3-4
None option, Build Level clause 4-4
Numbers

discrepancy between component and element 2-32
estimating elements for ACM 2-7
level 1-7, 4-3
version 4-3
volume serial 2-8

O
Objects

program 2-18
related 2-63

Options
Build Level clause 4-4
Clear statements 4-6
detail report 4-13
field 2-37
Foreground Query 1-7
List request, apply subsequent actions to 4-5
Print action 4-4
query 3-4

Output components
about 2-27
fields 2-59
footprints 2-64
monitoring 2-20

P
Panels

ACM Query 3-6
ACMQ Create GENERATE SCL 3-8
confirmation 2-36
Endevor ACM Submit JOBCARD Statements 3-11
fields, Summary of Levels 2-40
NDVRUSER 3-4
Processor Group Symbolics 2-27

Parameters, MONITOR=COMPONENTS 1-8
PDS 2-64
PDS/E 2-18
PRINT

action 4-4
Problem solving 4-7
PROC statement 2-27, 2-57
Procedures

activating ACM and ACM Query Facility 2-4
viewing component lists 2-34

X-4 Automated Configuration Option Guide

Processor
CONRELE utility 2-32
CONSCAN utility 2-32
delete 2-22
execution 2-58
generate 2-20
Group Symbolics panel 2-27
information

about 2-27
fields 2-55

Production, moving related source components to 4-21
Programs

monitoring 2-20
objects 2-18
propagating changes to 4-10
recreating past versions of 4-17
relationships, JCL 2-32
viewing levels 1-7

Propagating component changes to programs 4-10

Q
Qualifiers 2-8
Query

options, Foreground 1-7

R
Recreating load modules 4-17
Regression 4-21
Related

components 2-61
objects 2-63

Relationship information 2-32
Renumbering component levels 2-33
Report

components-used 2-11
Execution 4-13

Reporting, batch 1-7
Requirements, estimate space 2-7
Root data sets 1-5, 2-7

S
Sample

analyzing system behavior 4-7
component list 2-28
JCL for CONWIN DD statement 4-24
moving source components 4-21
processor for CONRELE 4-24
propagating component changes to programs 4-10
recreating load modules 4-17

Sample (continued)
validating consistent use of components 4-12

Scan elements or members 4-3
Scanning, source 1-4
SCL

ACMQ 3-3
check for inconsistencies 4-16
component list 1-7
PRINT 1-7
specify environment name 2-9

Search
option in PRINT action 2-9

Second-level qualifier 2-8
Serial number, volume 2-8
Set

commands 4-12
statements 4-5

Software
configuration management 1-4
Control Language (SCL) 1-7

Solving problems 4-7
Source

components, moving 4-21
scanning 1-4
translators compatibility 2-18

Space requirements, estimate 2-7
Spec clauses, Where component 4-3
Stage 2 4-18
Stamp, audit 1-8, 2-64
Statements

apply information to action 4-4
Clear 4-6
CONWIN DD 4-24
DD 1-6, 2-19
ENDVRPT DD 4-23
PROC 2-27, 2-57

Storage
component list 1-7
data 1-8
format, executable 2-18

Storing
component list data in external data set 4-24
Component Lists 2-30
configuration information 2-27

Summary information 2-39
Symbol information

about 2-27
PROC statements 2-57

Symbolics panel, Processor Group 2-27
Syntax, accepted Conrele user 4-23

Index X-5

SYSLIB 2-24
System

analyzing behavior 4-7
validation for components 4-12

T
Table C1DEFLTS 2-5
tdisk variable 2-9
Technology, base/delta 2-31
Through component-name 4-3
To dsname 4-11
Translators compatibility, source 2-18

U
Unit label 2-9
User syntax, accepted CONRELE 4-23
Using

ACM Query Facility (ACMQ) 3-4
BUILD MAP 2-36
component list data as input 4-24

Utilities
BC1PMVCL 2-21
CONLIST 2-18
CONRELE 4-23
CONRELE processor 2-32
CONSCAN processor 2-32
CONWRITE 4-24

V
Validating consistent use of components 4-12
Variables

changing to activate Query Facility 2-8
iprfx, iqual & vvolser 2-8
tdisk 2-9

Version
number 4-3
recreating past program 4-17

View
change history (HX) 2-47
component lists 2-34
configuration information online 1-7
Execution Report 4-14
program levels 1-7

Volume serial number 2-8
vvolser variable 2-8

W
WHERE clauses 4-3
Where-used queries 1-7
Wildcard usage 1-13
Writing elements to external location 4-24

X-6 Automated Configuration Option Guide

	Bookshelf
	Automated Configuration Option Guide
	Contents
	Chapter 1. Introduction
	1.1 Overview
	1.2 Before You Begin
	1.2.1 Read This Chapter First

	1.3 Software Configuration Management
	1.3.1 What is Software Configuration Management?
	1.3.2 Background
	1.3.3 Limitations of Source Scanning
	1.3.4 A New Technique

	1.4 Endevor ACM Facilities
	1.4.1 Summary
	1.4.2 Component Monitor
	1.4.3 Component List
	1.4.3.1 Component List Level Numbers

	1.4.4 Displaying Component Data and Batch Reporting
	1.4.5 Software Control Language (SCL) Enhancements
	1.4.6 ACM Query Facility

	1.5 Principles of Operation
	1.5.1 Three Areas of Operation
	1.5.2 Data Collection
	1.5.3 Data Storage
	1.5.3.1 Example

	1.5.4 Software Configuration Analysis and Management

	1.6 Documentation Overview
	1.7 Name Masking
	1.7.1 Usage

	1.8 Syntax Conventions
	1.8.1 Sample Syntax Diagram
	1.8.2 Syntax Diagram Explanation
	1.8.3 General Coding Information
	1.8.3.1 Valid Characters
	1.8.3.2 Incompatible Commands and Clauses
	1.8.3.3 Ending A Statement
	1.8.3.4 SCL Parsing Information

	1.8.4 Element Name Syntax Rules
	1.8.5 SCL Continuation Syntax Rules

	Chapter 2. Basic Operation
	2.1 Overview
	2.2 How Endevor ACM Works
	2.2.1 Overview

	2.3 Enabling Endevor ACM and the ACM Query Facility
	2.3.1 Procedure
	2.3.2 Activating the ACM Query Facility
	2.3.2.1 Step 1 Š Modify C1DEFLTS Table
	2.3.2.2 Step 2 Š Estimate Root and Cross- reference Data Sets Space Requirements
	2.3.2.3 Step 3 Š Define and Initialize Root and Cross- Reference Data Sets
	2.3.2.4 Step 4 Š Load Root and Cross- Reference Data Sets
	2.3.2.5 Syntax
	2.3.2.6 Output Examples
	2.3.2.7 Maintaining the Root and Cross- reference Data Sets

	2.4 Monitoring and Collecting Data
	2.4.1 After You've Enabled ACM
	2.4.2 The Component Monitor
	2.4.2.1 Program Object Support

	2.4.3 Activating the Endevor ACM Component Monitor
	2.4.4 Monitoring Components in Dynamically Allocated Data Sets
	2.4.4.1 Monitoring Input Components
	2.4.4.2 Monitoring Output Components

	2.4.5 Monitoring Components in a Generate Processor
	2.4.6 Monitoring Components in a Move Processor
	2.4.7 No Monitoring of Components in a Delete Processor
	2.4.7.1 Sample Generate Processor + MONITOR= COMPONENTS
	2.4.7.2 Sample Move Processor

	2.5 Storing Configuration Information
	2.5.1 Overview
	2.5.2 The Component List
	2.5.3 Storing Component Lists
	2.5.3.1 Base/ Delta Technology
	2.5.3.2 Component Levels
	2.5.3.3 CONSCAN Processor Utility
	2.5.3.4 Difference between Component Level and Element Level
	2.5.3.5 Component Levels Renumbered

	2.6 Viewing Component Lists
	2.6.1 Procedure
	2.6.2 WARNING
	2.6.3 Display Element/ Component Lists Panel Fields
	2.6.3.1 Option Field
	2.6.3.2 From Endevor Fields
	2.6.3.3 List Options Fields

	2.6.4 Displaying Summary Information
	2.6.4.1 Summary of Levels Panel Field Descriptions

	2.6.5 Using Browse Element (BX)
	2.6.6 Displaying Component Changes (CX)
	2.6.7 Viewing Change History (HX)

	2.7 Component List Fields
	2.7.1 Seven Sections
	2.7.2 Banner
	2.7.3 Component Level Information
	2.7.4 Element Information
	2.7.5 Processor Information
	2.7.6 Symbol Information
	2.7.7 Input Components
	2.7.8 Output Components
	2.7.9 Related Input Components
	2.7.10 Related Output Components
	2.7.11 Related Objects
	2.7.12 Related Comments
	2.7.13 Input/ Output Component Footprints
	2.7.13.1 Information Included in a Endevor Footprint
	2.7.13.2 When Footprints Are Included in the Component List
	2.7.13.3 When Footprints Are Not Included in the Component List

	2.8 Element Action Processing

	Chapter 3. ACM Query Facility
	3.1 Overview
	3.2 Introduction to the ACM Query Facility
	3.3 Using ACMQ
	3.3.1 Refreshing ACMQ Data
	3.3.2 Indirect References

	3.4 ACMQ Panels
	3.4.1 ACM Query Panel
	3.4.2 ACMQ Create GENERATE SCL Panel
	3.4.3 Endevor ACM Submit JOBCARD Statements Panel

	Chapter 4. Analyzing and Managing Software Configuration Information
	4.1 Overview
	4.2 SCL
	4.2.1 Overview
	4.2.2 The LIST Action
	4.2.2.1 WHERE Clauses
	4.2.2.2 Build Clauses

	4.2.3 The Print Action
	4.2.4 The Set Build Statement
	4.2.5 The Set Options Statement
	4.2.6 The Set Where Statement
	4.2.7 Clear Statements

	4.3 Change Impact Analysis Functions
	4.3.1 Overview
	4.3.2 Analyzing System Behavior
	4.3.2.1 Step 1: Create PRINT SCL
	4.3.2.2 Step 2: Submit the Job for Batch Execution
	4.3.2.3 Step 3: View the Resulting Report
	4.3.2.4 Step 4: Analyze System Behavior

	4.3.3 Propagating a Component Change to All Affected Programs
	4.3.3.1 Step 1: Change and Test the Retrieved Copybook and Program
	4.3.3.2 Step 2: Add the Copybook and Program to Stage 1
	4.3.3.3 Step 3: Create LIST SCL and Execute It
	4.3.3.4 Step 4: Tailor the Generated SCL and Execute It

	4.3.4 Validating a System for Consistent Use of Components
	4.3.4.1 Step 1: Create LIST SCL and Execute It
	4.3.4.2 Step 2: View Execution Report
	4.3.4.3 Step 3: Check Generated SCL for Inconsistencies

	4.3.5 Recreating Past Program Versions
	4.3.5.1 Step 1: Browse the Component List at Stage 2
	4.3.5.2 Step 2: Code LIST SCL and Submit for Execution
	4.3.5.3 Step 3: Tailor the Generated SCL and Submit for Execution

	4.3.6 Moving Related Source Components During Promotion to Production
	4.3.6.1 Step 1: Create LIST SCL
	4.3.6.2 Step 2: Run a Batch Execution
	4.3.6.3 Step 3: Tailor the Generated SCL
	4.3.6.4 Step 4: Run a Final Batch Execution

	4.3.7 Adding Related Elements to a Component List
	4.3.8 Writing Elements to an External Location

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

